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Abstract—Community search is a fundamental graph mining
task. In applications such as analysis of communication networks,
collaboration networks, and social networks, edges are typically
associated with timestamps. Unfortunately, most previous studies
focus mainly on identifying communities in a network without
temporal information. In this paper, we study the problem of
finding persistent communities in a temporal network, in which
every edge is associated with a timestamp. Our goal is to identify
the communities that are persistent over time. To this end,
we propose a novel persistent community model called (𝜃, 𝜏)-
persistent 𝑘-core to capture the persistence of a community.
We prove that the problem of identifying the maximum (𝜃, 𝜏)-
persistent 𝑘-core is NP-hard. To solve this problem, we first
propose a near-linear temporal graph reduction algorithm to
prune the original temporal graph substantially, without loss
of accuracy. Then, in the reduced temporal graph, we present
a novel branch and bound algorithm with several carefully-
designed pruning rules to find the maximum (𝜃, 𝜏)-persistent
𝑘-cores efficiently. We conduct extensive experiments in several
real-world temporal networks. The results demonstrate the
efficiency, scalability, and effectiveness of the proposed solutions.

I. INTRODUCTION

Many real-world networks such as social networks, bio-
logical networks, and communication networks contain com-
munity structures. Finding communities in a network is a
fundamental task in network analysis which has attracted much
attention in recent years due to a large number of real-life
applications [1], [2], [3], [4].

In applications such as analysis of communication networks,
collaboration networks of scientific papers, and social net-
works, the edges are often associated with temporal infor-
mation. For example, in the mobile-phone calling network,
each phone call contains a sender and a receiver, as well
as the time when the phone call was made. In the face-to-
face contact network [5], [6], each edge (𝑢, 𝑣, 𝑡) represents
a contact between two individuals 𝑢 and 𝑣 at time 𝑡. An-
other example is the collaboration network, where each edge
represents two authors, 𝑢 and 𝑣, coauthored a paper at time
𝑡. Unfortunately, most previous community search algorithms
ignore the temporal information of the graph, thus may fail
to identify important temporal patterns such as the persistent
and evolving community structures.

In this paper, we investigate the problem of finding per-
sistent community structures in the temporal network, where
each edge is associated with a timestamp. We aim to discover
the communities in a temporal network that are persistent
over time. To this end, an intuitive approach is to identify all
the persistent edges in the temporal network (e.g., the edge
with persistence no less than a given threshold), and then
applies traditional community search algorithms in the tempo-
ral sub-network induced by those persistent edges to find the
communities. This method, however, cannot completely reveal
the persistent communities. This is because various persistent
edges may be persistent over diverse time intervals, and thus
the whole community is not necessary persistent over time.
Indeed, we empirically show that such an intuitive solution
fails to identify persistent communities (see Section V-B for
details). Another potential approach is the temporal clique
enumeration [7], where a temporal clique involves a set of

nodes and a time interval 𝐼 . It persistently maintains the
clique structure in any 𝜃-length subinterval of 𝐼 . However, in
this model, the clique constraint could be too strong, which
may miss many useful persistent communities violating such
a clique constraint. Moreover, the temporal clique model only
considers one continue time interval. The real-world persistent
communities, however, may be persistent over different time
intervals. Therefore, the temporal clique model cannot fully
capture the persistence of the communities.

To overcome the limitations of the above methods, we
propose a new persistent community model, called (𝜃, 𝜏)-
persistent 𝑘-core, based on the concept of 𝑘-core [8]. For a
time interval 𝐼 , our model persistently preserves the 𝑘-core
structure in any 𝜃-length subinterval of 𝐼 . We refer to such an
interval 𝐼 as a persistent interval for convenience. A persistent
interval is maximal if none of its super-intervals is a persistent
interval. A community may have many different maximal
persistent intervals. We thus aggregate the duration of all such
maximal persistent intervals to measure the core persistence
of a community. We define a community as a (𝜃, 𝜏)-persistent
𝑘-core if it is a maximal induced temporal subgraph such that
its core persistence is no smaller than a given parameter 𝜏 (see
Section II for details). In many temporal network applications,
(𝜃, 𝜏)-persistent 𝑘-core can help to discover interesting groups
that are persistent over time. Such persistent groups can be
useful for finding a stable team of experts in collaboration
networks, and revealing different contact patterns in face-to-
face contact networks [9]. Below, we detail the applications.

Consider an application of finding a team of experts in a
scientific collaboration network (e.g., DBLP). We may wish
to find a stable and cohesive team to complete a task in which
the members continuously coauthored papers with each other
over a prolonged period. By identifying (𝜃, 𝜏)-persistent 𝑘-
cores, we can obtain the communities that persistently preserve
a 𝑘-core structure for a long time, indicating that they are
persistent and cohesive teams. Another interesting application
of our model arises in a face-to-face contact network. Consider
a temporal network of face-to-face contacts between patients
and health-care workers (including nurses, doctors, and ad-
ministrative staffs) in a hospital [5]. Finding (𝜃, 𝜏)-persistent
𝑘-cores in this temporal network can help to reveal the nature
of interactions between patients and health-care workers, and
show interesting semantics of contact. For example, let 𝜃 = 60
seconds, 𝑘 = 3, and 𝜏 = 300 seconds. Suppose that we find
a (60, 300)-persistent 3-core community involving a patient,
two nurses and a doctor. This community is likely to be
an event that the doctor treats the patient with the help of
two nurses, as a typical treatment process may last around
5 minutes. Note that traditional community models (e.g., 𝑘-
core) cannot reveal such a persistent contact pattern. Another
example is that a (300, 3600)-persistent 10-core community,
including an administrative staff and 10 nurses, probably
corresponds to a one-hour meeting among these individuals.
Further, assume that we find a (3600, 28800)-persistent 3-core
community including four nurses during more than 8 hours.
This community is likely to be a group of nurses that work in
the same room, because they persistently contact each other in
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a prolonged period. Note that revealing such important contact
patterns in a hospital can be useful for preventing the spread of
hospital-acquired infections [5]. For instance, consider again
the (3600, 28800)-persistent 3-core community involving four
nurses. If one of them get an infectious disease, then the other
three nurses are at a high risk of getting the same infectious
disease.

Contributions. In this paper, we formalize and provide solu-
tions to find the persistent communities in temporal networks.
In particular, we make the following principal contributions.
New model and hardness result. We propose a new persistent
community model called (𝜃, 𝜏)-persistent 𝑘-core to fully char-
acterize the persistence of a community. We prove that com-
puting the maximum (𝜃, 𝜏)-persistent 𝑘-core (or enumerating
all (𝜃, 𝜏)-persistent 𝑘-cores) is NP-hard.
Novel algorithms. To find the maximum (𝜃, 𝜏)-persistent 𝑘-
core, we first develop a novel temporal graph reduction (TGR)
algorithm with near-linear time complexity to prune the input
temporal graph. The TGR algorithm is based on an elegant
and newly-developed meta-interval decomposition technique.
We show that computing the meta-interval decomposition in a
temporal graph can be done in linear time and uses linear
space. Then, in the reduced temporal graph, we propose
a novel branch and bound algorithm with several powerful
pruning rules to find the maximum (𝜃, 𝜏)-persistent 𝑘-core
efficiently. Moreover, our algorithm can also be used to
enumerate all (𝜃, 𝜏)-persistent 𝑘-cores.
Experimental evaluation. We conduct extensive experiments
to evaluate the proposed model and algorithms using several
real-world temporal networks. The results show that in a
temporal graph with more than one million nodes and ten
millions edges, our algorithm consumes less than 100 seconds
to identify the maximum (𝜃, 𝜏)-persistent 𝑘-core in most pa-
rameter settings. We also perform comprehensive case studies
to evaluate the effectiveness of the proposed model. The results
demonstrate that our model can identify many meaningful and
interesting persistent communities that cannot be found by the
other models.

II. PRELIMINARIES

Let 𝒢 = (𝒱, ℰ) be an undirected temporal graph, where 𝒱
and ℰ denote the set of vertices and the set of temporal edges
respectively. Let 𝑛 = ∣𝒱∣ and 𝑚 = ∣ℰ∣ be the number of nodes
and temporal edges respectively. Each temporal edge 𝑒 ∈ ℰ is
a triplet (𝑢, 𝑣, 𝑡), where 𝑢, 𝑣 are vertices in 𝑉 , and 𝑡 is the
interaction time between 𝑢 and 𝑣. Let 𝑠𝑡 and 𝑒𝑑 be the time
of the first and the last occurred temporal edges respectively.
The interaction time 𝑡 of any temporal edge (𝑢, 𝑣, 𝑡) in 𝒢 must
fall into the interval [𝑠𝑡, 𝑒𝑑]. The length of the interval [𝑠𝑡, 𝑒𝑑]
is equal to ∣𝑒𝑑 − 𝑠𝑡∣. In this paper, we assume that 𝑡 is an
integer, because the timestamp is an integer in practice. Note
that the temporal edges (𝑢, 𝑣, 𝑡1) and (𝑢, 𝑣, 𝑡2) with 𝑡2 ∕= 𝑡1
are considered as two different temporal edges. Clearly, the
temporal graph can be represented as edge streams [7], [10].
Fig. 1(a) illustrates an example of a temporal graph with 4
nodes and 7 temporal edges.

For a subset of vertices 𝒱𝒮 , the induced temporal subgraph
𝒢𝑆 = (𝒱𝑆 , ℰ𝑆) is a subgraph such that ℰ𝑆 = {(𝑢, 𝑣, 𝑡)∣𝑢, 𝑣 ∈
𝒱𝑆 , (𝑢, 𝑣, 𝑡) ∈ ℰ}. The temporal neighborhood of a node 𝑢 in
𝒢 = (𝒱, ℰ) is defined by 𝒩𝑢(𝒢) ≜ {(𝑢, 𝑣, 𝑡)∣(𝑢, 𝑣, 𝑡) ∈ ℰ}.
For a temporal graph 𝒢, the projected graph denoted by 𝐺
over the time interval [𝑡𝑠, 𝑡𝑒] is defined as 𝐺 = (𝑉,𝐸, [𝑡𝑠, 𝑡𝑒]),
where 𝑉 = 𝒱 and 𝐸 = {(𝑢, 𝑣)∣(𝑢, 𝑣, 𝑡) ∈ ℰ , 𝑡 ∈ [𝑡𝑠, 𝑡𝑒]}.
Fig. 1(b) illustrates the projected graph of the temporal graph
in Fig. 1(a) over the interval [1, 8]. The degree of a node 𝑢
in 𝐺, denoted by 𝑑𝑢(𝐺), is the number of neighbors in 𝐺. A
𝑘-core in a graph 𝐺 is an induced subgraph 𝐶 = (𝑉𝐶 , 𝐸𝐶),
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(a) A temporal graph (b) The projected graph

Fig. 1. Running example

where each node in 𝑉𝐶 has a degree no smaller than 𝑘 [8]. A
connected 𝑘-core is a 𝑘-core and it is also connected.

The persistent community model. Intuitively, a persistent
community should continue to occur over a prolonged period
in the temporal graph. To model a community, we choose
the well-known 𝑘-core model [8], as it is widely used in
community search applications [11], [12], [13]. Based on this,
we propose a novel persistent community model, called (𝜃, 𝜏)-
persistent 𝑘-core, which can capture the persistence of the 𝑘-
core structure.

For convenience, we assume that both the parameters 𝜃
and 𝜏 in our model are integers, because the timestamp is
an integer. Note that the proposed model and algorithms can
also be extended to handle the case when 𝜃 and 𝜏 are non-
integers. Below, we first give a definition called maximal
(𝜃, 𝑘)-persistent-core interval.

Definition 1: (Maximal (𝜃, 𝑘)-persistent-core interval) Giv-
en a temporal graph 𝒢 = (𝒱, ℰ) and parameters 𝜃 and 𝑘, an
interval [𝑡𝑠, 𝑡𝑒] with 𝑡𝑒 − 𝑡𝑠 ≥ 𝜃 is called a maximal (𝜃, 𝑘)-
persistent-core interval for 𝒢 if and only if the following two
conditions hold. (1) For any 𝑡 ∈ [𝑡𝑠, 𝑡𝑒 − 𝜃], the projected
graph of 𝒢 over the interval [𝑡, 𝑡 + 𝜃] is a connected 𝑘-core.
(2) There is no super-interval of [𝑡𝑠, 𝑡𝑒] such that (1) holds.

By Definition 1, we can see that the temporal graph 𝒢 in the
maximal (𝜃, 𝑘)-persistent-core interval persistently maintains
the 𝑘-core structure in any 𝜃-length subinterval.

Example 1: Consider the temporal graph 𝒢 in Fig. 1(a).
Assume that 𝜃 = 3 and 𝑘 = 2. We can see that there is no
maximal (3, 2)-persistent-core interval for the entire graph 𝒢.
As shown in Fig. 2, there is a maximal (3, 2)-persistent-core
interval [1, 5] for the subgraph 𝒞 induced by nodes {𝑣1, 𝑣2, 𝑣3}.
This is because [1, 5] is the maximal interval such that in any
3-length subinterval of [1, 5], the nodes {𝑣1, 𝑣2, 𝑣3} form a
connected 2-core.

There may exist several maximal (𝜃, 𝑘)-persistent-core in-
tervals for a temporal graph 𝒢, and these intervals may overlap
each other. For example, if 𝜃 = 3 and 𝑘 = 1, the 1-core
{𝑣1, 𝑣3} has two overlapped maximal (𝜃, 𝑘)-persistent-core
intervals [−1, 5] and [4, 10]. Lemma 1 shows that the length
of the overlapped subintervals of any two maximal (𝜃, 𝑘)-
persistent-core intervals must be smaller than 𝜃. In the rest
of this paper, all proofs are omitted due to the space limit.

Lemma 1: Let [𝑡𝑠1 , 𝑡𝑒1 ] and [𝑡𝑠2 , 𝑡𝑒2 ] be two overlapped
maximal (𝜃, 𝑘)-persistent-core intervals of a temporal graph
𝒢, and 𝑡𝑒1 < 𝑡𝑒2 . Then, we have 𝑡𝑒1 − 𝑡𝑠2 ≤ 𝜃.

Based on the maximal (𝜃, 𝑘)-persistent-core interval, we
define the core persistence of a temporal graph 𝒢 as follows.

Definition 2: (Core persistence) Let 𝒯 =
{[𝑡𝑠1 , 𝑡𝑒1 ], ⋅ ⋅ ⋅ , [𝑡𝑠𝑟 , 𝑡𝑒𝑟 ]} be the set of all maximal (𝜃, 𝑘)-
persistent-core intervals of 𝒢. Then, the core persistence of 𝒢
with parameters 𝜃 and 𝑘, denoted by 𝐹 (𝜃, 𝑘,𝒢), is defined as

𝐹 (𝜃, 𝑘,𝒢) ≜

⎧⎨
⎩

𝑟∑
𝑖=1

(𝑡𝑒𝑖 − 𝑡𝑠𝑖 )− (𝑟 − 1)𝜃, 𝑖𝑓𝒯 ∕= ∅

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(1)

By Definition 2, the core persistence of a temporal graph 𝒢
is equal to the total length of all maximal (𝜃, 𝑘)-persistent-
core intervals of 𝒢 minus (𝑟 − 1)𝜃. The rationale behind
this definition is twofold. First, since two maximal (𝜃, 𝑘)-
persistent-core intervals may overlap and the length of the
overlapped interval is bounded by 𝜃 (see Lemma 1), we
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Fig. 2. Illustration of the maximal (𝜃, 𝑘)-persistent-core interval (𝜃 = 3, 𝑘 =
2). The 2-core {𝑣1, 𝑣2, 𝑣3} appears in any 3-length subinterval of [1, 5].

discount 𝜃 for every two adjacent intervals. For 𝑟 maximal
(𝜃, 𝑘)-persistent-core intervals, the total length thus decreases
by (𝑟 − 1)𝜃. Second, using Eq. (1) can reduce the effect of
the 𝜃-length interval. Consider the following two cases: (1)
there are 𝑟 𝜃-length maximal (𝜃, 𝑘)-persistent-core intervals
for 𝒢, and (2) there is only one maximal (𝜃, 𝑘)-persistent-core
interval for 𝒢 with length 𝑟 × 𝜃. Intuitively, 𝒢 under the case
(2) should be considered as more persistent than 𝒢 under the
case (1). This is because in case (2), 𝒢 maintains the 𝑘-core
structure in a 𝑟 times longer interval than each interval in
case (1). By using the total length of all intervals, we cannot
distinguish these two different cases. By Definition 2, the core
persistence of 𝒢 in the case (1) is 𝜃, whereas in the case (2)
it equals 𝑟 × 𝜃. Based on these reasons, we use Definition 2
to define the core persistence. It is worth mentioning that the
proposed algorithms also work when the core persistence is
defined as the total length of all maximal (𝜃, 𝑘)-persistent-core
intervals.

Definition 3: ((𝜃, 𝜏)-persistent 𝑘-core) Given a temporal
graph 𝒢, parameters 𝜃, 𝜏 , and 𝑘, a (𝜃, 𝜏)-persistent 𝑘-core
is an induced temporal subgraph 𝒞 = (𝒱𝐶 , ℰ𝐶) that meets the
following properties.
∙ Persistent core property: 𝐹 (𝜃, 𝑘, 𝒞) ≥ 𝜏 ;
∙ Maximal property: there does not exist an induced tem-

poral subgraph 𝒞′ that contains 𝒞 and also satisfies the
persistent core property.

Intuitively, the (𝜃, 𝜏)-persistent 𝑘-core is capable of captur-
ing the persistence of a community, because it preserves a 𝑘-
core structure in every 𝜃 time in the maximal (𝜃, 𝑘)-persistent-
core intervals with total length no less than 𝜏 .

Example 2: Reconsider the temporal graph 𝒢 in Fig. 1(a).
Let 𝜃 = 3, 𝜏 = 4 and 𝑘 = 2. We claim that the subgraph
𝒞 induced by nodes {𝑣1, 𝑣2, 𝑣3} is a (3, 4)-persistent 2-
core. The reason is as follows. First, the subgraph 𝒞 has a
maximal (3, 2)-persistent-core interval [1, 5] (see Example 1).
Therefore, the core persistence of 𝒞 is equal to 4 (i.e.,
𝐹 (3, 2, 𝒞) = 4), which is no less than 𝜏 . On the other
hand, 𝒞 is the maximal subgraph that meets such a persistent
core property. As a consequence, the subgraph 𝒞 is a (3, 4)-
persistent 2-core.

Note that the (𝜃, 𝜏)-persistent 𝑘-cores of a temporal graph
may overlap each other. As a result, the number of (𝜃, 𝜏)-
persistent 𝑘-cores may be exponentially large, and thus it is
very costly to enumerate all (𝜃, 𝜏)-persistent 𝑘-cores. In prac-
tice, we are often interested in finding the maximum (𝜃, 𝜏)-
persistent 𝑘-core. Therefore, in this paper, we focus mainly
on finding the largest (𝜃, 𝜏)-persistent 𝑘-core. We emphasize
that the proposed solutions can also be used to enumerate all
(𝜃, 𝜏)-persistent 𝑘-cores as discussed in Section IV.

The persistent community (PC) search problem. Given a
temporal graph 𝒢 = (𝒱, ℰ), parameters 𝜃, 𝜏 and 𝑘, we aim to
find the largest (𝜃, 𝜏)-persistent 𝑘-core in 𝒢.

Hardness result. Since the number of (𝜃, 𝜏)-persistent 𝑘-cores
in a temporal graph can be exponentially large, it is very
hard to identify the largest one. We show that the PC search
problem is NP-hard.

Theorem 1: The problem of finding the largest (𝜃, 𝜏)-
persistent 𝑘-core is NP-hard.

Proof: We consider the decision version of Problem 2.
Given a temporal graph 𝒢, parameters 𝜃, 𝜏 , and 𝑘, test

whether 𝒢 contains an induced temporal subgraph with 𝜂+ 1
nodes that satisfies the persistent core property. Clearly, the
maximum subgraph that meets the persistent core property
is the largest (𝜃, 𝜏)-persistent 𝑘-core. To prove the theorem,
we construct a reduction from the balanced bipartite subgraph
(BBS) problem, which is known to be NP-hard [14]. Given a
connected bipartite graph ℬ = (𝒳 ,𝒴, ℰ𝐵) and an integer 𝜂,
the BBS problem is to verify whether ℬ contains a complete
bipartite subgraph with 𝜂 nodes on each side. Based on this,
we construct an instance of our problem which consists of a
temporal graph 𝒢, parameters 𝜃 = 1, 𝜏 = (𝜂+1), and 𝑘 = 1.
For convenience, we assume that the nodes in 𝒴 are sorted by
their identities, denoted by 𝒴 = {𝑢1, 𝑢2, ⋅ ⋅ ⋅ , 𝑢𝑛}. First, we
create a node 𝑠 for the temporal graph, which corresponds to
every node 𝑢𝑖 ∈ 𝒴 (𝑖 = 1, ⋅ ⋅ ⋅ , 𝑛). For each edge (𝑣, 𝑢𝑖) ∈ ℰ𝐵 ,
we create a temporal edge (𝑠, 𝑣, 2 × 𝑖 − 1). Based on this
construction, we obtain a temporal graph 𝒢 = (𝒱, ℰ), where
𝒱 = 𝒳 ∪{𝑠} and ℰ = {(𝑠, 𝑣, 2× 𝑖−1)∣(𝑣, 𝑢𝑖) ∈ ℰ𝐵}. Clearly,
for each node 𝑢𝑖 ∈ 𝒴 , we can obtain a star-shaped subgraph in
𝒢 at time 2𝑖−1, which is denoted by 𝒮𝑖. Below, we show that
the instance of the BBS problem is a Yes-instance if and only
if the corresponding instance of our problem is a Yes-instance.

First, suppose that ℬ contains a complete bipartite subgraph
ℋ = (𝒳𝐻 ,𝒴𝐻 , ℰ𝐻) such that ∣𝒳𝐻 ∣ = ∣𝒴𝐻 ∣ = 𝜂. Then, by
our construction, for each node 𝑢𝑗 ∈ 𝒴𝐻 , we have a star-
shaped subgraph in 𝒢 which includes all the nodes in 𝒳𝐻 and
a node 𝑠. Let 𝒞 be the star-shaped subgraph induced by 𝒳𝐻 ∪{𝑠}. Clearly, 𝒞 is a 1-core. For each 𝑢𝑗 ∈ 𝒴𝐻 , the maximal
(𝜃, 𝑘)-persistent-core interval of 𝒞 is [2𝑗−2, 2𝑗]. Since ∣𝒴𝐻 ∣ =
𝜂, we have 𝜂 different and non-overlapped maximal (𝜃, 𝑘)-
persistent-core intervals with the same length 2. Therefore, the
core persistence of 𝒞 is 𝜂 + 1. As a consequence, we obtain
an Yes-instance of our problem, because 𝒞 has 𝜂 + 1 nodes
and its core persistence is no smaller than 𝜏 = 𝜂 + 1.

Second, suppose that 𝒢 consists of a temporal subgraph
𝒞 with 𝜂 + 1 nodes and its core persistence (core parameter
𝑘 = 1) is no less than 𝜂+1. Recall that 𝒢 is constructed by a set
of star-shaped subgraphs at different timestamps. For a star-
shaped subgraph 𝒮 , we call an interval [𝑡𝑠, 𝑡𝑒] the maximal
𝜃-persistent interval of 𝒮 if and only if the following two
conditions hold: (1) 𝒮 appears in every 𝜃-length subintervals
and (2) there does not exist a super-interval that satisfies (1).
Clearly, for each star-shaped subgraph 𝒮𝑖, the maximal 𝜃-
persistent interval is [2𝑖−2, 2𝑖] (𝜃 = 1). Since all the maximal
1-persistent intervals of the star-shaped subgraphs are non-
overlapped and the core persistence of 𝒞 is no less than 𝜂+1, 𝒞
must be contained in at least 𝜂 different star-shaped subgraphs.
On the other hand, since the core persistence of 𝒞 is no less
than 𝜂 + 1, the projected graph of 𝒞 is connected. By our
construction, we can conclude that 𝒞 must contain the node 𝑠.
By picking 𝜂 star-shaped subgraphs that contains 𝒞, we can
recover a balanced complete bipartite subgraph that consists
of 𝜂 nodes on each side. Thus, we obtain an Yes-instance of
the BBS problem.

III. TEMPORAL GRAPH REDUCTION

As shown in Theorem 1, the problem of finding the largest
(𝜃, 𝜏)-persistent 𝑘-core is NP-hard. Therefore, straightforward-
ly computing the largest (𝜃, 𝜏)-persistent 𝑘-core is intractable
for large temporal graphs. To solve our problem efficiently, we
propose a novel temporal graph reduction (TGR) technique,
which can substantially reduce the size of the temporal graph
without missing any (𝜃, 𝜏)-persistent 𝑘-core. We show that our
TGR technique can be implemented in near-linear time (with
a factor 𝜃), thus it is very efficient in practice. After reducing
the temporal graph size, we will propose an efficient branch
and bound algorithm to solve our problem in Section IV.
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Fig. 3. Illustration of maximal (𝜃, 𝑘)-persistent-degree intervals for 𝑣1 (𝜃 =
3, 𝑘 = 2). 𝑑𝑣1 ≥ 2 holds in any 3-length subinterval of [−1, 5] (or [4, 9]).

A. The key idea

By Definition 3, we can easily derive that every node
in a (𝜃, 𝜏)-persistent 𝑘-core must persistently preserve the
property of “degree no less than 𝑘” in the maximal (𝜃, 𝑘)-
persistent-core intervals with total length no smaller than 𝜏 .
For convenience, we refer to such a property as a persistent-
degree property. Clearly, we can safely prune the nodes in
the temporal graph 𝒢 that do not meet the persistent-degree
property. Furthermore, pruning the unpromising nodes may
result in their neighbor nodes that do not satisfy the persistent-
degree property. Therefore, we can iteratively remove the
unpromising nodes from 𝒢 until all nodes in the reduced graph
satisfy the persistent-degree property. Below, we introduce two
new definitions, which are important to devise the temporal
graph reduction (TGR) algorithm.

Definition 4: (Maximal (𝜃, 𝑘)-persistent-degree interval)
Given a temporal graph 𝒢 = (𝒱, ℰ), a node 𝑢 ∈ 𝒱 , and
two integer parameters 𝜃 and 𝑘, an interval [𝑡𝑢𝑠 , 𝑡

𝑢
𝑒 ] with

𝑡𝑢𝑒 − 𝑡𝑢𝑠 ≥ 𝜃 is called a maximal (𝜃, 𝑘)-persistent-degree
interval for 𝑢 if and only if the following two conditions hold.
(1) For any 𝑡 ∈ [𝑡𝑢𝑠 , 𝑡

𝑢
𝑒 − 𝜃], the degree of 𝑢 in the projected

graph of 𝒢 over the interval [𝑡, 𝑡 + 𝜃] is no less than 𝑘. (2)
There does not exist a super-interval of [𝑡𝑢𝑠 , 𝑡

𝑢
𝑒 ] such that (1)

holds.
In the maximal (𝜃, 𝑘)-persistent-degree interval of 𝑢, the

degree of 𝑢 is no smaller than 𝑘 in any 𝜃-length subinterval
by Definition 4. In this sense, 𝑢 persistently maintains the
property of “degree no less than 𝑘” in the maximal (𝜃, 𝑘)-
persistent-degree interval.

Example 3: Consider the temporal graph in Fig. 1(a). Let
𝜃 = 3 and 𝑘 = 2. Then, as illustrated in Fig. 3, there are
two maximal (𝜃, 𝑘)-persistent-degree intervals for node 𝑣1
which are [−1, 5]1 and [4, 9]. This is because in [−1, 5], 𝑣1
has a degree no less than 2 in each subinterval with length
3. Moreover, there is no super-interval of [−1, 5] such that
𝑣1 persistently maintains the property of degree no less than
2. Note that the interval [−1, 6] is not a maximal (𝜃, 𝑘)-
persistent-degree interval, as there exist 𝜃-length subintervals
(e.g., [2.5, 5.5]) such that 𝑣1’s degree is smaller than 2. Similar
results also hold for the interval [4, 9]. Clearly, we can see that
these two maximal (𝜃, 𝑘)-persistent-degree intervals overlap.
Likewise, for node 𝑣2, we can obtain a maximal (𝜃, 𝑘)-
persistent-degree interval [1, 6]. For node 𝑣3, we obtain two
maximal (𝜃, 𝑘)-persistent-degree intervals which are [1, 5] and
[5, 10]. For 𝑣4, we have a maximal (𝜃, 𝑘)-persistent-degree
interval [5, 9].

Similar to Definition 1, there may exist several maximal
(𝜃, 𝑘)-persistent-degree intervals for a node 𝑢, and these
intervals may overlap each other (as shown in Example 3).
The following lemma shows that for a node 𝑢, the length of
the overlapped subinterval of two maximal (𝜃, 𝑘)-persistent-
degree intervals is smaller than 𝜃.

Lemma 2: Let [𝑡𝑢𝑠1 , 𝑡
𝑢
𝑒1 ] and [𝑡𝑢𝑠2 , 𝑡

𝑢
𝑒2 ] be two overlapped

maximal (𝜃, 𝑘)-persistent-degree intervals of a node 𝑢, and
𝑡𝑢𝑒1 < 𝑡

𝑢
𝑒2 . Then, we have 𝑡𝑢𝑒1 − 𝑡𝑢𝑠2 ≤ 𝜃.

Similar to Definition 2, we define the degree persistence for
a node 𝑢 as follows.

1Note that “−1” as a timestamp does not affect the correctness of all the
examples given in this paper.

Definition 5: (Degree persistence) Let 𝒯 =
{[𝑡𝑢𝑠1 , 𝑡𝑢𝑒1 ], ⋅ ⋅ ⋅ , [𝑡𝑢𝑠𝑟 , 𝑡𝑢𝑒𝑟 ]} be the set of all maximal (𝜃, 𝑘)-
persistent-degree intervals of 𝑢. Then, the degree persistence
of 𝑢 with parameters 𝜃 and 𝑘, denoted by 𝑓(𝑢, 𝜃, 𝑘,𝒢), is
defined as

𝑓(𝑢, 𝜃, 𝑘,𝒢) ≜

⎧⎨
⎩

𝑟∑
𝑖=1

(𝑡
𝑢
𝑒𝑖
− 𝑡𝑢𝑠𝑖 )− (𝑟 − 1)𝜃, 𝑖𝑓𝒯 ∕= ∅

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

(2)

By Definition 5, the degree persistence of each node satisfies
monotonic property. That is to say, the degree persistence of
any node 𝑢 in a temporal graph 𝒢 is no less than the degree
persistence of 𝑢 in any temporal subgraph of 𝒢.

Lemma 3: Let 𝒢1 = (𝒱1, ℰ1) be a temporal subgraph
of 𝒢2 = (𝒱2, ℰ2). Then, for any node 𝑢 ∈ 𝒱1, we have
𝑓(𝑢, 𝜃, 𝑘,𝒢1) ≤ 𝑓(𝑢, 𝜃, 𝑘,𝒢2).

Example 4: Reconsider the temporal graph 𝒢 in Fig. 1(a).
Let 𝜃 = 3 and 𝑘 = 2. Then, based on the results in Example 3,
we can easily derive that 𝑓(𝑣1, 3, 2,𝒢) = 8, 𝑓(𝑣2, 3, 2,𝒢) = 5,
𝑓(𝑣3, 3, 2,𝒢) = 6, and 𝑓(𝑣4, 3, 2,𝒢) = 4. However, if
we only consider the temporal subgraph 𝒢′ induced by the
nodes {𝑣1, 𝑣2, 𝑣3}, we can obtain that 𝑓(𝑣1, 3, 2,𝒢′) = 6,
𝑓(𝑣2, 3, 2,𝒢′) = 5, 𝑓(𝑣3, 3, 2,𝒢′) = 4. Clearly, we have
𝑓(𝑣1, 3, 2,𝒢′) < 𝑓(𝑣1, 3, 2,𝒢), 𝑓(𝑣2, 3, 2,𝒢′)= 𝑓(𝑣2, 3, 2,𝒢),
and 𝑓(𝑣3, 3, 2,𝒢′) < 𝑓(𝑣3, 3, 2,𝒢). This example confirms
that the degree persistence of each node indeed satisfies the
monotonic property (Lemma 3).

By Definitions 3 and 5, we can easily prove that the degree
persistence of each node in a (𝜃, 𝜏)-persistent 𝑘-core must be
no less than 𝜏 .

Lemma 4: Suppose that there is a (𝜃, 𝜏)-persistent 𝑘-core
𝒞 in the temporal graph 𝒢. Then, for every node 𝑢 ∈ 𝒞, we
has 𝑓(𝑢, 𝜃, 𝑘, 𝒞) ≥ 𝜏 .

Based on Lemmas 3 and 4, we can safely prune the node
𝑣 in 𝒢 if 𝑓(𝑢, 𝜃, 𝑘,𝒢) < 𝜏 , as 𝑣 is definitely not contained
in any (𝜃, 𝜏)-persistent 𝑘-core. Moreover, after pruning all
the unpromising nodes in 𝒢, the degree persistence of the
residual nodes may decrease (by Lemma 3). Thus, this pruning
procedure may trigger a domino effect, i.e., the pruning of
unpromising nodes may result in new unpromising nodes. As a
consequence, we can iteratively remove the unpromising nodes
until the degree persistence of every node in the residual graph
is no less than 𝜏 . We refer to such an iterative pruning proce-
dure as a TGR procedure. The following example illustrates
the TGR procedure.

Example 5: Reconsider the temporal graph 𝒢 in Fig. 1(a).
Suppose that 𝜃 = 3, 𝑘 = 2 and 𝜏 = 5. As shown in Example 4,
𝑣4 is an unpromising node, as 𝑓(𝑣4, 3, 2,𝒢) = 4 < 𝜏 . Thus,
we can remove 𝑣4. After pruning 𝑣4, we obtain a temporal
subgraph 𝒢′ induced by {𝑣1, 𝑣2, 𝑣3}. The deletion of 𝑣4 leads
to 𝑓(𝑣3, 3, 2,𝒢′) = 4 < 𝜏 (Example 4), and thus we can
further delete 𝑣3. Iteratively, we can get that all nodes will be
deleted, indicating that 𝒢 does not contain a (3, 5)-persistent
2-core.

Challenges. There are two challenges to implement the TGR
procedure. First, we need to compute the degree persistence
for each node 𝑢 in 𝒢 efficiently. By Definition 5, we has
to find all the maximal (𝜃, 𝑘)-persistent-degree intervals of
𝑢 to compute the degree persistence of 𝑢. It is nontrivial to
devise an efficient algorithm to find all such intervals, because
the intervals may overlap each other. Second, the degree
persistence of a node 𝑢 may frequently update in the TGR
procedure. It is challenging to devise an efficient algorithm to
maintain the degree persistence for the remaining nodes after
pruning an unpromising node.

Below, we propose an elegant meta-interval decomposition
technique to tackle these challenges. Based on the meta-
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interval decomposition technique, we can implement the TGR
procedure in near-linear time, using linear space.
B. Meta-interval decomposition

We assume in this paper that all the temporal edges in 𝒢 are
sorted in an increasing order by their timestamps. Note that if
this assumption does not hold, we can sort the temporal edges
in linear time, because each timestamp is an integer.

By Definitions 4 and 5, we can compute the degree
persistence for a node 𝑢 based on the temporal neighborhood
of 𝑢. Let 𝒩𝑢(𝒢) = {(𝑢, 𝑣1, 𝑡1), ⋅ ⋅ ⋅ , (𝑢, 𝑣ℎ, 𝑡ℎ)} with
𝑡𝑖 < 𝑡𝑖+1 (𝑖 = 1, ⋅ ⋅ ⋅ , ℎ − 1) be the temporal neighborhood
of 𝑢. Note that all the 𝑣𝑖 ∈ 𝒩𝑢(𝐺) are not necessarily
distinct, i.e., there may exist repeated neighbors. For
example, in the temporal graph shown in Fig. 1(a), 𝒩𝑣1 =
{(𝑣1, 𝑣2, 1), (𝑣1, 𝑣3, 2), (𝑣1, 𝑣2, 3), (𝑣1, 𝑣4, 6), (𝑣1, 𝑣3, 7)} in
which 𝑣2 and 𝑣3 are repeated neighbors of 𝑣1. The degree of
𝑢 w.r.t. 𝒩𝑢(𝒢) denotes the number of distinct neighbors in
𝒩𝑢(𝒢). To easily describe the meta-interval decomposition
technique, we first assume that all the 𝑣𝑖 ∈ 𝒩𝑢(𝐺) are
distinct, and then we will show how to extend our technique
to handle the case when there exist repeated neighbors in
𝒩𝑢(𝐺).

For each node 𝑢, the key idea of our technique is to
decompose the entire time interval of 𝒩𝑢(𝐺) into a set of
meta-intervals, and then compute and maintain the degree
persistence of 𝑢 only using the meta-intervals. We introduce
the definition of the meta-interval as follows.

Definition 6: (Meta-Interval) Given a node 𝑢 and its tem-
poral neighborhood 𝒩𝑢(𝒢), an open interval (𝑡𝑠, 𝑡𝑒) is a meta-
interval of 𝑢 if and only if the following conditions hold: (1)
𝑡𝑒 − 𝑡𝑠 > 𝜃, and (2) in every 𝜃-length subinterval of (𝑡𝑠, 𝑡𝑒),
𝑢 has the same degree.

Definition 6 indicates that a node 𝑢 in the meta-interval
(𝑡𝑠, 𝑡𝑒) has a uniform degree. Below, we give a useful defi-
nition called 𝜃-persistent degree for a node 𝑢 in the interval
[𝑡𝑙, 𝑡𝑟] (or (𝑡𝑙, 𝑡𝑟)).

Definition 7: (𝜃-persistent degree) Given a node 𝑢 and a
temporal graph 𝒢. The 𝜃-persistent degree of a node 𝑢 in the
interval 𝐼 = [𝑡𝑙, 𝑡𝑟] (or (𝑡𝑙, 𝑡𝑟)) is the maximal integer 𝑑 such
that 𝑢 has a degree no less than 𝑑 in every 𝜃-length subinterval
of 𝐼 .

Clearly, in the meta-interval of 𝑢, the so-called uniform
degree of 𝑢 is equal to the 𝜃-persistent degree by Definitions 6
and 7. However, it should be noted that the 𝜃-persistent degree
of a node 𝑢 is also well-defined for any general interval (not
only for meta-intervals). The following example illustrates the
definitions of meta-interval and 𝜃-persistent degree.

Example 6: Consider the node 𝑣1 in the temporal graph in
Fig. 1(a). Suppose that 𝜃 = 3. Then, we can check that (0, 5)
is a meta-interval for 𝑣1, because in any 3-length subinterval
of (0, 5), 𝑣1 has the same degree 2. Similarly, the open interval
(2, 6) is also a meta-interval for 𝑣1. This is because in the open
interval (2, 6), there are only two temporal edges ((𝑣1, 𝑣2, 3)
and (𝑣2, 𝑣3, 4)), and 𝑣1 has the same degree 1 in any 3-length
subinterval of (2, 6). Clearly, by Definition 7, the 3-persistent
degree of 𝑣1 in the meta-interval (0, 5) is 2, because 2 is the
maximal integer such that 𝑣1 has a degree no less than 2 in
every 3-length subinterval of (0, 5). Also, we can see that in
the closed interval [5, 9], the 3-persistent degree of 𝑣1 is 2.

To compute the meta-intervals of a node 𝑢 and the corre-
sponding 𝜃-persistent degree in each meta-interval, we define
the lifespan of a temporal edge (𝑢, 𝑣, 𝑡) as [𝑡, 𝑡+𝜃], because the
edge (𝑢, 𝑣, 𝑡) contributes 1 to the degree of 𝑢 in this interval.

Algorithm 1 outlines our meta-interval decomposition tech-
nique, which can compute all the meta-intervals as well as
the corresponding 𝜃-persistent degrees for a node 𝑢. For each
temporal edge (𝑢, 𝑣𝑖, 𝑡𝑖) ∈ 𝒩𝑢(𝐺), the algorithm generates

Algorithm 1 Meta-interval-Decomposition (𝑢, 𝒩𝑢, 𝜃)
1: Let 𝒩𝑢 = {(𝑢, 𝑣1, 𝑡1), ⋅ ⋅ ⋅ , (𝑢, 𝑣ℎ, 𝑡ℎ)} with 𝑣𝑖 ∕= 𝑣𝑗 for 𝑖 ∕= 𝑗;
2: for 𝑖 = 1 to ℎ do
3: Let [𝑡𝑖, 𝑡𝑖 + 𝜃] be the lifespan of (𝑢, 𝑣𝑖, 𝑡𝑖);
4: 𝒯1(𝑖) ← {𝑡𝑖,+1}; 𝒯2(𝑖) ← {𝑡𝑖 + 𝜃,−1};
5: 𝒯 ′ ← Sort({𝒯1, 𝒯2}); 𝑖← 1; 𝑗 ← 1;
6: while 𝑖 < ∣𝒯 ′∣ − 1 do
7: 𝒯 (𝑗).𝑓𝑖𝑟𝑠𝑡← 𝒯 ′(𝑖).𝑓𝑖𝑟𝑠𝑡; 𝑑← 𝒯 ′(𝑖).𝑠𝑒𝑐𝑜𝑛𝑑;
8: while 𝑖 < ∣𝒯 ′∣ − 1 and 𝒯 ′(𝑖).𝑓𝑖𝑟𝑠𝑡 = 𝒯 ′(𝑖+ 1).𝑓𝑖𝑟𝑠𝑡 do
9: 𝑑← 𝑑+ 𝒯 ′(𝑖+ 1).𝑠𝑒𝑐𝑜𝑛𝑑; 𝑖← 𝑖+ 1;

10: 𝒯 (𝑗).𝑠𝑒𝑐𝑜𝑛𝑑← 𝑑; 𝑗 ← 𝑗 + 1;
11: 𝑑← 0;
12: for 𝑖 = 1 to ∣𝒯 ∣ − 1 do
13: 𝑑← 𝑑+ 𝒯 (𝑖).𝑠𝑒𝑐𝑜𝑛𝑑; {// compute the prefix sum for 𝒯 }
14: 𝒟𝑢(𝑖) ← 𝑑; ℳℐ𝑢(𝑖) ← (𝒯 (𝑖).𝑓𝑖𝑟𝑠𝑡, 𝒯 (𝑖+ 1).𝑓𝑖𝑟𝑠𝑡);
15: return {𝒟𝑢,ℳℐ𝑢};

two pairs {𝑡𝑖,+1} and {𝑡𝑖 + 𝜃,−1} (lines 2-4), denoting that
the edge (𝑢, 𝑣𝑖) contributes 1 to the degree of 𝑢 at time 𝑡𝑖 and
decreases the degree by 1 at time 𝑡𝑖 + 𝜃. This is because the
lifespan of each temporal edge (𝑢, 𝑣𝑖, 𝑡𝑖) is [𝑡𝑖, 𝑡𝑖 + 𝜃] by our
definition. Then, in line 5, Algorithm 1 sorts all these pairs
in an increasing order by their timestamps, i.e., the first item
of each pair. Let 𝒯 ′ be the sorted list of those pairs. For each
𝒯 ′(𝑖), the first term 𝒯 ′(𝑖).𝑓𝑖𝑟𝑠𝑡 is a timestamp, and the second
term 𝒯 ′(𝑖).𝑠𝑒𝑐𝑜𝑛𝑑 is an integer either 1 or −1. Note that
the first terms of 𝒯 ′ (i.e., all 𝒯 ′(𝑖).𝑓𝑖𝑟𝑠𝑡) are not necessarily
distinct. Algorithm 1 filters those repeated timestamps in 𝒯 ′,
and takes the sum of the second terms of 𝒯 ′ at each repeated
timestamp (lines 6-10). After this processing, the algorithm
creates an array 𝒯 to record the results, where all the first
terms in 𝒯 are distinct. Subsequently, the algorithm computes
the prefix sum based on the second terms of 𝒯 (line 13),
and builds two arrays 𝒟𝑢 and ℳℐ𝑢 to record the prefix
sums and the intervals (𝒯 (𝑖).𝑓𝑖𝑟𝑠𝑡, 𝒯 (𝑖 + 1).𝑓𝑖𝑟𝑠𝑡) for all
𝑖 = 1, ⋅ ⋅ ⋅ , ∣𝒯 ∣−1, respectively (line 14). By our construction,
we can easily derive that the prefix sum computed from 𝒯 (1)
to 𝒯 (𝑖) is equal to the number of surviving edges at timestamp
𝒯 (𝑖).𝑓𝑖𝑟𝑠𝑡. Finally, the algorithm returns the arrays 𝒟𝑢 and
ℳℐ𝑢. The following theorem shows that for each interval
ℳℐ𝑢(𝑖) = (𝑡𝑠, 𝑡𝑒), the 𝜃-shifted interval (𝑡𝑠 − 𝜃, 𝑡𝑒) is a
meta-interval, and the corresponding 𝜃-persistent degree of 𝑢
in (𝑡𝑠 − 𝜃, 𝑡𝑒) is 𝒟𝑢(𝑖).

Theorem 2: For each ℳℐ𝑢(𝑖) = (𝑡𝑠, 𝑡𝑒) and 𝒟𝑢(𝑖) com-
puted by Algorithm 1, the interval (𝑡𝑠 − 𝜃, 𝑡𝑒) is a meta-
interval. Moreover, in any 𝜃-length subinterval of (𝑡𝑠 − 𝜃, 𝑡𝑒),
𝑢 has the same degree 𝒟𝑢(𝑖).

Since each interval in ℳℐ𝑢 corresponds to a meta-interval,
we call ℳℐ𝑢 the meta-interval array. We also refer to 𝒟𝑢 as
the 𝜃-persistent degree array, because 𝒟𝑢(𝑖) is equal to the
𝜃-persistent degree of 𝑢 in the meta-interval ℳℐ𝑢(𝑖). The
following example illustrates the meta-interval decomposition
technique.

Example 7: Reconsider the temporal graph in Fig. 1(a). Let
us consider the node 𝑣4 with parameter 𝜃 = 3. By Algorithm 1,
we have 𝒯 ′ = 𝒯 = {(6,+1), (8,+1), (9,−1), (11,−1)}.
Then, we can easily derive that the 𝜃-persistent degree array
(i.e., the prefix sum array) 𝒟𝑣4 = {1, 2, 1} and the meta-
interval array ℳℐ𝑣4 = {(6, 8), (8, 9), (9, 11)}. We can see
that for any ℳℐ𝑣4(𝑖) = (𝑡𝑠, 𝑡𝑒), the 𝜃-persistent degree of
𝑣4 in the meta-interval (𝑡𝑠 − 𝜃, 𝑡𝑒) is 𝒟𝑣4(𝑖). For instance, in
the meta-interval (5, 9) (corresponding to ℳℐ𝑣4(2)), 𝑣4 has
a degree 2 in every subinterval with length 3.

Handling repeated neighbors. Here we extend the meta-
interval decomposition technique to the case when the node
has repeated neighbors. First, we find that in 𝒩𝑢(𝐺), if the
time gap between any two repeated neighbors is no less than 𝜃,
we can deem them as different neighbors and use Algorithm 1
to compute the meta-intervals. The reason is as follows. Let
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Fig. 4. Illustration of the meta-interval decomposition for 𝑣1 (𝜃 = 3)

(𝑢, 𝑣, 𝑡1) and (𝑢, 𝑣, 𝑡2) be two temporal edges, and 𝑣 is the
repeated neighbor of 𝑢 in 𝒩𝑢(𝐺). If the gap 𝑡2 − 𝑡1 ≥ 𝜃, the
next repeated neighbor (𝑣, 𝑡2) appears after (𝑣, 𝑡1) vanishing,
thus they do not repeatedly contribute 1 to the degree in any
𝜃-length interval.

Second, for two temporal edges (𝑢, 𝑣, 𝑡1) and (𝑢, 𝑣, 𝑡2) with
0 < 𝑡2 − 𝑡1 < 𝜃, the lifespan of (𝑢, 𝑣, 𝑡1) and (𝑢, 𝑣, 𝑡2)
is [𝑡1, 𝑡1 + 𝜃] and [𝑡2, 𝑡2 + 𝜃] respectively. Clearly, by our
previous algorithm (Algorithm 1), the edges (𝑢, 𝑣, 𝑡1) and
(𝑢, 𝑣, 𝑡2) will contribute 2 to the degree of 𝑢 in the interval
[𝑡2, 𝑡1+𝜃], which is incorrect. To remedy this issue, we revise
the lifespan of (𝑢, 𝑣, 𝑡1) by [𝑡1, 𝑡2], and keep the lifespan of
(𝑢, 𝑣, 𝑡2) unchanged. Note that this processing can be done in
linear time. After this processing, we can use Algorithm 1 to
compute the meta-intervals of 𝑢. Specifically, we only need
to change the line 3 of Algorithm 1 using the revised lifespan
for the repeated neighbors. The following example illustrates
how the algorithm works.

Example 8: Assume that 𝜃 = 3. Fig. 4 illustrates the
meta-interval decomposition procedure for 𝑣1 in our running
example. For node 𝑣1, the time gap between the two
repeated neighbors (𝑣2, 1) and (𝑣2, 3) is smaller than
𝜃. Thus, we need to revise the lifespan of the temporal
edge (𝑣1, 𝑣2, 1) by [1, 3]. Note that for the two repeated
neighbors (𝑣3, 2) and (𝑣3, 7), since the time gap between
them is larger than 𝜃, it is no need to update the lifespan
of the temporal edge (𝑣1, 𝑣3, 2). After that, we can obtain
that 𝒯 ′ = {(1,+1), (2,+1), (3,−1), (3,+1), (5,−1),
(6,−1), (6,+1), (7,+1), (9,−1), (10,−1)} (i.e., the sorted
𝑇 array in Fig. 4), and 𝒯 = {(1,+1), (2,+1), (3, 0),
(5,−1), (6, 0), (7,+1), (9,−1), (10,−1)} (i.e., the aggreaged
𝑇 array in Fig. 4). Then, we have 𝒟𝑣1 = {1, 2, 2, 1, 1, 2, 1} and
ℳℐ𝑣1 = {(1, 2), (2, 3), (3, 5), (5, 6), (6, 7), (7, 9), (9, 10)}.
The meta-intervals of 𝑣1 are the 𝜃-shifted intervals as shown
in Fig. 4.

Complexity analysis. We analyze the time and space com-
plexity to compute the meta-interval decomposition for all
nodes in 𝒢 using Algorithm 1 as follows.

Theorem 3: The total time and space costs of Algorithm 1
to compute the meta-interval decomposition for all nodes 𝑢 ∈
𝒢 are 𝑂(𝑚), where 𝑚 is the number of temporal edges.

C. Computing degree persistence
Recall that to compute the degree persistence for a node

𝑢, we need to find all the maximal (𝜃, 𝑘)-persistent-degree
intervals of 𝑢. Here we show that all the maximal (𝜃, 𝑘)-
persistent-degree intervals of 𝑢 can be constructed by merging
adjacent meta-intervals, and the degree persistence of 𝑢 can al-
so be computed by the meta-interval decomposition technique.

array:D

MI array: ( , )1 2 ( , )2 3 ( , )3 5 ( , )5 6 ( , )6 7 ( , )7 9 ( , )9 10

1 2 2 1 1 2 1

(2, 5) (7, 9)

Maximal persistent
degree intervals: (-1, 5) (4, 9)

Fig. 5. Illustration of constructing maximal (𝜃, 𝑘)-persistent-degree intervals
for 𝑣1 based on meta-interval decomposition (𝜃 = 3, 𝑘 = 2)

Below, we consider two different cases.

Case I: 𝑓(𝑢, 𝜃, 𝑘,𝒢) > 𝜃. If the degree persistence
𝑓(𝑢, 𝜃, 𝑘,𝒢) > 𝜃, there must be a maximal (𝜃, 𝑘)-persistent-
degree interval of 𝑢 with length larger than 𝜃. In this case,
we can ignore all 𝜃-length maximal (𝜃, 𝑘)-persistent-degree
intervals of 𝑢, because these intervals contribute nothing to
the degree persistence by Definition 5. Therefore, we focus
on finding all maximal (𝜃, 𝑘)-persistent-degree intervals of 𝑢
with length larger than 𝜃.

Letℳℐ𝑢 = {(𝑡𝑠1 , 𝑡𝑒1), ⋅ ⋅ ⋅ , (𝑡𝑠ℎ , 𝑡𝑒ℎ)} be the meta-interval
array of a node 𝑢 calculated by Algorithm 1 with parameter
𝜃, and 𝒟𝑢 = {𝒟𝑢(1), ⋅ ⋅ ⋅ ,𝒟𝑢(ℎ)} be the 𝜃-persistent degree
array of 𝑢. For convenience, we define 𝒟𝑢(0) = 𝒟𝑢(ℎ+1) =
−∞. Then, we have the following result.

Lemma 5: For a parameter 𝑘 and 𝑖 ≤ ℎ−1, if both 𝒟𝑢(𝑖) ≥
𝑘 and 𝒟𝑢(𝑖 + 1) ≥ 𝑘 hold, 𝑢 has a degree no less than 𝑘 in
any 𝜃-length subinterval of [𝑡𝑠𝑖 − 𝜃, 𝑡𝑒𝑖+1

].
Lemma 5 indicates that we can merge two adjacent meta-

intervals in ℳℐ𝑢 if the 𝜃-persistent degree of 𝑢 in these
intervals is no less than 𝑘. In the merged interval, 𝑢 persistently
maintains the property of “degree no less 𝑘”. Based on
Lemma 5, we can obtain the maximal (𝜃, 𝑘)-persistent-degree
intervals of 𝑢 by merging the adjacent meta-intervals in ℳℐ𝑢.

Theorem 4: If 𝒟𝑢(𝑖) ≥ 𝑘 for all 𝑖 = 𝑙, ⋅ ⋅ ⋅ , 𝑟 (𝑙 ≤ 𝑟),
𝒟𝑢(𝑙 − 1) < 𝑘 and 𝒟𝑢(𝑟 + 1) < 𝑘 hold, then [𝑡𝑠𝑙 − 𝜃, 𝑡𝑒𝑟 ] is
a maximal (𝜃, 𝑘)-persistent-degree interval of 𝑢.

Example 9: Let 𝑘 = 2 and 𝜃 = 3. Fig. 5 illustrates the pro-
cedure of constructing maximal (𝜃, 𝑘)-persistent-degree inter-
vals for the node 𝑣1 based on meta-interval decomposition. By
Example 8 and Fig. 4, we have 𝒟𝑣1 = {1, 2, 2, 1, 1, 2, 1} and
ℳℐ𝑣1 = {(1, 2), (2, 3), (3, 5), (5, 6), (6, 7), (7, 9), (9, 10)}. In
ℳℐ𝑣1 , we have two adjacent meta-intervals (2, 3) and (3, 5)
such that 𝑣1’s 𝜃-persistent degree in the intervals (−1, 3) and
(0, 5) is no less than 𝑘 (𝑘 = 2). Also, we have a meta-interval
(7, 9) such that 𝑣1’s 𝜃-persistent degree in the 𝜃-shifted interval
(4, 9) is no less than 2. By Theorem 4, we can obtain two
maximal (𝜃, 𝑘)-persistent-degree intervals [−1, 5] and [4, 9],
which are consistent with the results shown in Example 3.

Theorem 4 shows that all maximal (𝜃, 𝑘)-persistent-degree
intervals of 𝑢 with length larger than 𝜃 can be obtained by
meta-interval decomposition. Based on this, we can compute
the degree persistence for every node 𝑢 if 𝑓(𝑢, 𝜃, 𝑘,𝒢) > 𝜃
by Theorem 5.

Theorem 5: For a node 𝑢, if 𝑓(𝑢, 𝜃, 𝑘,𝒢) > 𝜃, we have
𝑓(𝑢, 𝜃, 𝑘,𝒢) =

∑
𝒟𝑢(𝑖)⩾𝑘 (𝑡𝑒𝑖 − 𝑡𝑠𝑖) + 𝜃, where (𝑡𝑠𝑖 , 𝑡𝑒𝑖) ∈

ℳℐ𝑢.

Case II: 𝑓(𝑢, 𝜃, 𝑘,𝒢) ≤ 𝜃. By Definition 5, if 𝑓(𝑢, 𝜃, 𝑘,𝒢) ≤
𝜃, there is no maximal (𝜃, 𝑘)-persistent-degree interval of 𝑢
with length larger than 𝜃. We consider the following two cases.
First, if 𝜏 > 𝜃, we can immediately prune node 𝑢, because 𝑢’s
degree persistence 𝑓(𝑢, 𝜃, 𝑘,𝒢) ≤ 𝜃 < 𝜏 .

Second, if 𝜏 ≤ 𝜃, we can slightly modify Algorithm 1
to compute all the maximal (𝜃, 𝑘)-persistent-degree intervals
of 𝑢. Note that in this case, the length of each maximal
(𝜃, 𝑘)-persistent-degree interval of 𝑢 must be equal to 𝜃
(because 𝑓(𝑢, 𝜃, 𝑘,𝒢) ≤ 𝜃). To compute the maximal (𝜃, 𝑘)-
persistent-degree intervals of 𝑢, we create two additional
arrays ℳ̃ℐ𝑢 and �̃�𝑢. For each 𝒯 (𝑖) in the line 14 of
Algorithm 1, we generate an additional closed point-interval
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ℳ̃ℐ𝑢(𝑖) = [𝒯 (𝑖).𝑓𝑖𝑟𝑠𝑡, 𝒯 (𝑖).𝑓𝑖𝑟𝑠𝑡] and calculate the degree
�̃�𝑢(𝑖) which equals the number of surviving temporal edges at
the timestamp 𝒯 (𝑖).𝑓𝑖𝑟𝑠𝑡. Note that this process can be done
in linear time. Clearly, in the 𝜃-shifted interval [𝒯 (𝑖).𝑓𝑖𝑟𝑠𝑡−
𝜃, 𝒯 (𝑖).𝑓𝑖𝑟𝑠𝑡], 𝑢 has a degree �̃�𝑢(𝑖). Any maximal (𝜃, 𝑘)-
persistent-degree interval must be a 𝜃-shifted interval of a
point-interval contained in ℳ̃ℐ𝑢. Theorem 6 shows how
to recognize the 𝜃-length maximal (𝜃, 𝑘)-persistent-degree
intervals from ℳ̃ℐ𝑢 based on the arrays 𝒟𝑢 and �̃�𝑢.

Theorem 6: For an interval ℳ̃ℐ𝑢(𝑖) = [𝑡𝑖, 𝑡𝑖], if �̃�𝑢(𝑖) =
𝑘, 𝒟𝑢(𝑖−1) < 𝑘 and 𝒟𝑢(𝑖) < 𝑘, then [𝑡𝑖−𝜃, 𝑡𝑖] is a 𝜃-length
maximal (𝜃, 𝑘)-persistent-degree interval of 𝑢.

Based on the above results, we can find all maximal (𝜃, 𝑘)-
persistent-degree intervals of 𝑢 and compute 𝑓(𝑢, 𝜃, 𝑘,𝒢) if
𝑓(𝑢, 𝜃, 𝑘,𝒢) ≤ 𝜃.
Complexity. Theorems 5 and 6 demonstrate that computing
the degree persistence for all nodes in 𝒢 can be done in linear
time based on the meta-interval decomposition technique.

D. Updating degree persistence
For each node 𝑢, we can update the degree persistence of 𝑢

when a temporal edge in 𝒩𝑢(𝒢) is deleted or inserted based on
the meta-interval decomposition. In the rest of this paper, we
focus mainly on the case of 𝑓(𝑢, 𝜃, 𝑘,𝒢) > 𝜃, and the proposed
algorithms can easily extend to handle the 𝑓(𝑢, 𝜃, 𝑘,𝒢) ≤ 𝜃
case. Let ℳℐ𝑢 = {(𝑡𝑠1 , 𝑡𝑒1), ⋅ ⋅ ⋅ , (𝑡𝑠ℎ , 𝑡𝑒ℎ)} and 𝒟𝑢 be the
arrays computed by Algorithm 1 in 𝒩𝑢(𝒢) with parameter 𝜃.
Let 𝑒 = (𝑢, 𝑣𝑖, 𝑡𝑖) be a temporal edge in 𝒩𝑢(𝒢), and [𝑡𝑖, 𝑡𝑒] be
its lifespan (𝑡𝑒 ≤ 𝑡𝑖+ 𝜃). Note that 𝑡𝑒 is not necessarily equal
to 𝑡𝑖 + 𝜃, because 𝑣𝑖 may be a repeated neighbor of 𝑢 (see
Section III-B). Recall that by the meta-interval decomposition
technique, there must exist an index 𝑙 such that ℳℐ𝑢(𝑙) =
(𝑡𝑠𝑙 , 𝑡𝑒𝑙) and 𝑡𝑠𝑙 = 𝑡𝑖. If 𝑡𝑒𝑙 < 𝑡𝑒, there is an index 𝑟 (𝑙 <
𝑟 ≤ ℎ) such that ℳℐ𝑢(𝑟) = (𝑡𝑠𝑟 , 𝑡𝑒𝑟 ) and 𝑡𝑠𝑟 < 𝑡𝑒 ≤ 𝑡𝑒𝑟 .
Otherwise, we let 𝑟 = 𝑙.

By the above definition, the lifespan of the temporal edge
𝑒 = (𝑢, 𝑣𝑖, 𝑡𝑖) (i.e., [𝑡𝑖, 𝑡𝑒]) hits every meta-interval in ℐ =
{(𝑡𝑠𝑙 − 𝜃, 𝑡𝑒𝑙), ⋅ ⋅ ⋅ , (𝑡𝑠𝑟 − 𝜃, 𝑡𝑒𝑟 )}. Clearly, for node 𝑢, the
deletion (or insertion) of a temporal edge 𝑒 = (𝑢, 𝑣𝑖, 𝑡𝑖) only
affects the 𝜃-persistent degree of 𝑢 in each meta-interval in ℐ .
Specifically, we have the following results.

Lemma 6: After deleting a temporal edge 𝑒 = (𝑢, 𝑣𝑖, 𝑡𝑖)
from 𝒩𝑢(𝒢), we decrease 𝒟𝑢(𝑗) by 1 for all 𝑗 = 𝑙, ⋅ ⋅ ⋅ , 𝑟, and
keep 𝒟𝑢(𝑗), for all 𝑗 /∈ [𝑙, 𝑟], unchanged. Based on the updated
𝒟𝑢 array, we have 𝑓(𝑢, 𝜃, 𝑘,𝒢∖{𝑒}) = ∑

𝒟𝑢(𝑖)⩾𝑘 (𝑡𝑒𝑖 − 𝑡𝑠𝑖)+
𝜃.

Lemma 7: After inserting a temporal edge 𝑒 = (𝑢, 𝑣𝑖, 𝑡𝑖)
back into 𝒩𝑢(𝒢)∖{𝑒}, we increase 𝒟𝑢(𝑗) by 1 for all 𝑗 =
𝑙, ⋅ ⋅ ⋅ , 𝑟 and keep 𝒟𝑢(𝑗), for all 𝑗 /∈ [𝑙, 𝑟], unchanged.
Based on the updated 𝒟𝑢 array, we have 𝑓(𝑢, 𝜃, 𝑘,𝒢) =∑
𝒟𝑢(𝑖)⩾𝑘 (𝑡𝑒𝑖 − 𝑡𝑠𝑖) + 𝜃.
Lemmas 6 and 7 show that we only need to update the

array 𝒟𝑢 when we delete an edge from 𝒩𝑢(𝒢) or add back
an edge 𝑒 into 𝒩𝑢(𝒢)∖{𝑒}. It is important to note that we do
not destroy the original meta-interval structure of 𝑢 computed
in 𝒩𝑢(𝒢) when updating 𝑢’s degree persistence. Moreover,
since the lifespan of each temporal edge 𝑒 (i.e., [𝑡𝑖, 𝑡𝑒]) is no
larger than 𝜃 by our definition, the number of elements in
𝒟𝑢 that are needed to be updated is bounded by 𝜃 (because
[𝑡𝑖, 𝑡𝑒] hits at most 𝜃 meta-intervals). As a consequence, we
can update the degree persistence in 𝑂(𝜃) time after obtaining
the meta-interval decomposition.

Example 10: Reconsider the node 𝑣1 in Fig. 1(a).
Let 𝑘 = 2 and 𝜃 = 3. By the meta-interval
decomposition, we obtain 𝒟𝑣1 = {1, 2, 2, 1, 1, 2, 1} and
ℳℐ𝑣1 = {(1, 2), (2, 3), (3, 5), (5, 6), (6, 7), (7, 9), (9, 10)}.

Algorithm 2 TGR (𝒢, 𝜃, 𝑘, 𝜏 )
Input: 𝒢 = (𝒱, ℰ), 𝜃, 𝑘, and 𝜏
Output: The reduced temporal graph 𝒞
1: 𝒬 ← ∅; 𝑓𝑙𝑎𝑔(𝑢) ← 1 for all 𝑢 ∈ 𝒱 ;
2: for all 𝑢 ∈ 𝒱 do
3: {𝒟𝑢,ℳℐ𝑢} ← Meta-interval-Decomposition (𝑢, 𝒩𝑢, 𝜃);
4: Compute 𝑓(𝑢, 𝜃, 𝑘,𝒢) (by Theorems 5 and 6); 𝑑𝑢 ← 𝑓(𝑢, 𝜃, 𝑘,𝒢);
5: if 𝑑𝑢 < 𝜏 then
6: 𝒬.𝑝𝑢𝑠ℎ(𝑢); 𝑓𝑙𝑎𝑔(𝑢) ← 0;
7: while 𝒬 ∕= ∅ do
8: 𝑢← 𝒬.𝑝𝑜𝑝();
9: for all (𝑢, 𝑣, 𝑡) ∈ 𝒩𝑢(𝒢) do

10: Let [𝑡, 𝑡𝑒] be the lifespan of the temporal edge (𝑢, 𝑣, 𝑡);
11: Let ℳℐ𝑣 = {(𝑡𝑠1 , 𝑡𝑒1 ), ⋅ ⋅ ⋅ , (𝑡𝑠ℎ , 𝑡𝑒ℎ )};
12: Suppose 𝑡𝑠𝑖 = 𝑡; 𝑗 ← 𝑖;
13: while 𝑗 ≤ ℎ and 𝑡𝑠𝑗 < 𝑡𝑒 do
14: 𝒟𝑣(𝑗) ← 𝒟𝑣(𝑗)− 1;
15: if 𝒟𝑣(𝑗) + 1 ≥ 𝑘 and 𝒟𝑣(𝑗) < 𝑘 then
16: 𝑑𝑣 ← 𝑑𝑣 − (𝑡𝑒𝑗 − 𝑡𝑠𝑗 ); {// Update the degree persistence}
17: if 𝑑𝑣 + (𝑡𝑒𝑗 − 𝑡𝑠𝑗 ) ≥ 𝜏 and 𝑑𝑣 < 𝜏 then
18: 𝒬.𝑝𝑢𝑠ℎ(𝑣); 𝑓𝑙𝑎𝑔(𝑣) ← 0;
19: 𝑗 ← 𝑗 + 1;
20: return 𝒞 ← Subgraphs induced by the nodes with 𝑓𝑙𝑎𝑔(𝑢) = 1;

Suppose that we delete the temporal edge 𝑒 = (𝑣1, 𝑣2, 1).
Since the lifespan of 𝑒 is [1, 3] and (𝑡𝑠1 , 𝑡𝑒1) = (1, 2), we
have 𝑙 = 1. Since 𝑡𝑒𝑙 = 2 < 𝑡𝑒 and 𝑡𝑠2 < 𝑡𝑒 ≤ 𝑡𝑒2 , we have
𝑟 = 2. Therefore, by Lemma 6, we decrease both 𝒟𝑣1(1) and
𝒟𝑣1(2) by 1. The degree persistence is updated by 7, because
there are two meta-intervals with 𝜃-persistent degree no less
than 𝑘 (intervals (3, 5) and (7, 9)). Note that after deleing
𝑒, the maximal (𝜃, 𝑘)-persistent-degree intervals of 𝑣1 are
[0, 5] and [4, 9] by Definition 4. Thus, our result is consistent
with the result obtained by definition. On the other hand, if
we add back 𝑒 into 𝒩𝑣1(𝒢∖{𝑒}), we increase both 𝒟𝑣1(1)
and 𝒟𝑣1(2) by 1 based on Lemma 7. We can verify that the
degree persistence of 𝑣1 is updated by 8, which is consistent
with the result obtained by Definition 4.

E. The TGR algorithm

Armed with the results shown in the previous sections,
we are now ready to present the TGR algorithm. The TGR
algorithm is outlined in Algorithm 2. Specifically, Algorith-
m 2 first invokes Algorithm 1 to compute the meta-interval
decomposition for every node 𝑢 ∈ 𝒱 (line 3). Then, the
algorithm calculates the degree persistence based on the
meta-interval decomposition, and pushes all the nodes with
degree persistence less than 𝜏 into the queue 𝒬 (lines 4-
6). Subsequently, the algorithm iteratively removes the nodes
with degree persistence less than 𝜏 (lines 7-19). In each
iteration, the algorithm pops a node from 𝒬 (line 8), and
traverses its temporal neighborhood 𝒩𝑢(𝒢). For each temporal
edge 𝑒 = (𝑢, 𝑣, 𝑡) ∈ 𝒩𝑢(𝒢), the algorithm updates the
degree persistence of 𝑣 after deleing 𝑒 based on Lemma 6
(lines 10-19). If the updated degree persistence of a node
is smaller than 𝜏 , the algorithm pushes it into the queue
𝒬 (line 18). The algorithm terminates when 𝒬 is empty.
When the algorithm terminates, all the remaining nodes in
𝒢 have degree persistence no less than 𝜏 . The complexity of
Algorithm 2 is analyzed in Theorem 7.

Theorem 7: The time and space complexity of Algorithm 2
is 𝑂(𝜃𝑚) and 𝑂(𝑚) respectively.

IV. ALGORITHM FOR PC SEARCH

In this section, we propose a tractable algorithm for the PC
search problem. Our algorithm includes two stages. First, we
invoke Algorithm 2 to reduce the temporal graph. Then, in
the reduced temporal graph, we propose an efficient branch
and bound algorithm with several powerful pruning rules to
compute the largest (𝜃, 𝜏)-persistent 𝑘-core. Below, we first
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Algorithm 3 Meta-Interval-Intersection (ℛ, 𝑘)
1: Let ℳℐℛ ← {(−∞,+∞)}; 𝑙𝑒𝑛← +∞;
2: for all 𝑢 ∈ ℛ do
3: Let ℎ← ∣ℳℐ𝑢∣, and ℳℐ𝑢 = {(𝑡𝑠1 , 𝑡𝑒1 ), ⋅ ⋅ ⋅ , (𝑡𝑠ℎ , 𝑡𝑒ℎ )};
4: Let 𝑝← ∣ℳℐℛ∣, and ℳℐℛ = {(𝑡𝑙1 , 𝑡𝑟1 ), ⋅ ⋅ ⋅ , (𝑡𝑙𝑝 , 𝑡𝑟𝑝 )};
5: ℳℐ𝒯 ← ∅; 𝑡𝑙𝑒𝑛← 0; 𝑗 ← 1;
6: for 𝑖 = 1 to ℎ do
7: if 𝒟𝑢(𝑖) ≥ 𝑘 then
8: while 𝑗 ≤ 𝑝 and 𝑡𝑟𝑗 ≤ 𝑡𝑠𝑖 do
9: 𝑗 ← 𝑗 + 1;

10: while 𝑗 ≤ 𝑝 and 𝑡𝑟𝑗 ≤ 𝑡𝑒𝑖 do
11: 𝑙← max{𝑡𝑙𝑗 , 𝑡𝑠𝑖}; 𝑟 ← 𝑡𝑟𝑗 ;
12: if 𝑙 < 𝑟 then
13: ℳℐ𝒯 ←ℳℐ𝒯 ∪ {(𝑙, 𝑟)}; 𝑡𝑙𝑒𝑛← 𝑡𝑙𝑒𝑛 + (𝑟 − 𝑙);
14: 𝑗 ← 𝑗 + 1
15: if 𝑗 ≤ 𝑝 and 𝑡𝑙𝑗 ≤ 𝑡𝑒𝑖 then
16: 𝑙← max{𝑡𝑙𝑗 , 𝑡𝑠𝑖}; 𝑟 ← 𝑡𝑒𝑖 ;
17: if 𝑙 < 𝑟 then
18: ℳℐ𝒯 ←ℳℐ𝒯 ∪ {(𝑙, 𝑟)}; 𝑡𝑙𝑒𝑛← 𝑡𝑙𝑒𝑛 + (𝑟 − 𝑙);
19: ℳℐℛ ←ℳℐ𝒯 ; 𝑙𝑒𝑛← 𝑡𝑙𝑒𝑛;
20: return {ℳℐℛ, 𝑙𝑒𝑛+ 𝜃};

propose three key sub-algorithms which will be frequently
invoked in the branch and bound algorithm.
A. Three key sub-algorithms

Compute common meta-intervals. Here we propose an algo-
rithm to compute the common meta-intervals for a set of nodes
which will be utilized to evaluate the core persistence. The
algorithm is outlined in Algorithm 3. Given a set of nodes ℛ,
Algorithm 3 outputs the common meta-intervals such that in
each of those meta-intervals every node in ℛ has a 𝜃-persistent
degree no less than 𝑘. Algorithm 3 first initializes a common
meta-interval array ℳℐℛ = {(−∞,+∞)} for an empty
node set (line 1). Then, the algorithm iteratively traverses
a node 𝑢 ∈ ℛ, and takes the interval-intersection between
the common meta-interval array ℳℐℛ and the meta-interval
array of 𝑢 (lines 2-19). In each iteration, the algorithm updates
ℳℐℛ by the resulting meta-intervals (line 19). Note that for
each node 𝑢 ∈ ℛ, we only need to consider the meta-intervals
ℳℐ𝑢(𝑖) for all 𝑖 = 1, ⋅ ⋅ ⋅ , ℎ such that 𝒟𝑢(𝑖) ≥ 𝑘 (line 7). For
convenience, we refer to those meta-intervals as active meta-
intervals. This is because only the active meta-intervals will be
used to compute the core persistence. Algorithm 3 also outputs
𝑙𝑒𝑛 which is equal to the total length of the common meta-
intervals plus 𝜃 (line 20). Note that if ℛ forms a connected
𝑘-core and all 𝒟𝑢 for 𝑢 ∈ ℛ have been updated w.r.t. ℛ, we
can easily obtain that 𝐹 (𝜃, 𝑘,ℛ) = 𝑙𝑒𝑛 + 𝜃 (similar to the
results of Theorem 5).

Let𝑁𝑢 be the number of meta-intervals of 𝑢 with𝒟𝑢(𝑖) ≥ 𝑘
for 𝑖 = 1, ⋅ ⋅ ⋅ , ℎ (i.e., 𝑁𝑢 denotes the number of active
meta-intervals.). Then, we analyze the time complexity of
Algorithm 3 in Theorem 8.

Theorem 8: Let 𝑁𝑅 =
∑
𝑢∈{ℛ}𝑁𝑢. The time complexity

of Algorithm 3 is 𝑂(∣ℛ∣𝑁𝑅).
Remove nodes. We present an algorithm to maintain the de-
gree persistence of the nodes after deleting a node 𝑢, because
our branch and bound algorithm frequently invokes the node-
removal procedure to prune the search space. The algorithm is
described in Algorithm 4. In Algorithm 4, the parameter 𝑢 is
the node that we want to delete, and the parameter 𝒮 denotes
a set of nodes that cannot be deleted. After removing 𝑢, we
only need to maintain the degree persistence of the neighbors
of 𝑢. Thus, the algorithm iteratively traverses a temporal edge
in 𝒩𝑢(𝒢). In each iteration, the algorithm update the degree
persistence of 𝑢’s neighbors based on the result shown in
Lemma 6 (lines 3-14). The algorithm makes use of a set ℛ
to record the neighbors whose updated degree persistence is
smaller than 𝜏 (lines 10-11). Since the nodes in ℛ cannot be
contained in the (𝜃, 𝜏)-persistent 𝑘-core, all nodes in ℛ can

Algorithm 4 Remove-Node (𝑢, 𝒮, 𝑘, 𝜏 )
1: 𝑓𝑙𝑎𝑔 ← 1; ℛ ← ∅;
2: for all (𝑢, 𝑣, 𝑡) ∈ 𝒩𝑢(𝒢) do
3: Let [𝑡, 𝑡𝑒] be the lifespan of (𝑢, 𝑣, 𝑡);
4: Let ℳℐ𝑣 = {(𝑡𝑠1 , 𝑡𝑒1 ), ⋅ ⋅ ⋅ , (𝑡𝑠ℎ , 𝑡𝑒ℎ )};
5: Suppose 𝑡𝑠𝑖 = 𝑡; 𝑗 ← 𝑖;
6: while 𝑗 ≤ ℎ and 𝑡𝑠𝑗 < 𝑡𝑒 do
7: 𝒟𝑣(𝑗) ← 𝒟𝑣(𝑗)− 1;
8: if 𝒟𝑣(𝑗) + 1 ≥ 𝑘 and 𝒟𝑣(𝑗) < 𝑘 then
9: 𝑑𝑣 ← 𝑑𝑣 − (𝑡𝑒𝑗 − 𝑡𝑠𝑗 ); {// Update the degree persistence}

10: if 𝑑𝑣 + (𝑡𝑒𝑗 − 𝑡𝑠𝑗 ) ≥ 𝜏 and 𝑑𝑣 < 𝜏 then
11: ℛ ← ℛ∪ {𝑣};
12: if 𝑣 ∈ 𝒮 then
13: 𝑓𝑙𝑎𝑔 ← 0;
14: 𝑗 ← 𝑗 + 1;
15: return {ℛ, 𝑓𝑙𝑎𝑔};

Algorithm 5 Add-Node (𝑢, 𝑘)
1: for all (𝑢, 𝑣, 𝑡) ∈ 𝒩𝑢(𝒢) do
2: Let [𝑡, 𝑡𝑒] be the lifespan of (𝑢, 𝑣, 𝑡);
3: Let ℳℐ𝑣 = {(𝑡𝑠1 , 𝑡𝑒1 ), ⋅ ⋅ ⋅ , (𝑡𝑠ℎ , 𝑡𝑒ℎ )};
4: Suppose 𝑡𝑠𝑖 = 𝑡; 𝑗 ← 𝑖;
5: while 𝑗 ≤ ℎ and 𝑡𝑠𝑗 < 𝑡𝑒 do
6: 𝒟𝑣(𝑗) ← 𝒟𝑣(𝑗) + 1;
7: if 𝒟𝑣(𝑗) ≥ 𝑘 and 𝒟𝑣(𝑗)− 1 < 𝑘 then
8: 𝑑𝑣 ← 𝑑𝑣 + (𝑡𝑒𝑗 − 𝑡𝑠𝑗 ); {// Update the degree persistence}
9: 𝑗 ← 𝑗 + 1;

be deleted. If ℛ consists of a node in 𝒮, the algorithm returns
false, indicating that we cannot delete node 𝑢 (lines 12-13).
The time complexity of Algorithm 4 is shown Theorem 9.

Theorem 9: The time complexity of Algorithm 4 is
𝑂(𝜃∣𝒩𝑢(𝒢)∣).
Add nodes. Similarly, we present Algorithm 5 to maintain the
degree persistence of the nodes after adding a node 𝑢. This
is because after deleting the nodes by the branch and bound
algorithm, we need to add back the removed nodes to recover
the search state (i.e., the backtracking procedure). Algorithm 5
is based on the results shown in Lemma 7. Since the general
procedure of the algorithm is very similar to Algorithm 4,
we omit the details. The time complexity of Algorithm 5 is
𝑂(𝜃∣𝒩𝑢(𝒢)∣).
B. The branch and bound framework

Equipped with the three sub-algorithms, we propose the
branch and bound algorithm and the PC search algorithm in
Algorithm 6 and Algorithm 7 respectively. In Algorithm 7, we
first call Algorithm 2 to reduce the temporal graph (line 2),
and then invokes Algorithm 6 to compute the maximum (𝜃, 𝜏)-
persistent 𝑘-core. Below, we details Algorithm 6.

The key idea of Algorithm 6. Let 𝒞 be the input graph
(i.e., the reduced temporal graph) of the algorithm. First, we
compute all the maximal connected components of 𝒞 (line 2).
For each component 𝒞, we invoke Algorithm 3 to compute
the total length of the common meta-intervals of the nodes
in 𝒞, denoted by 𝑙𝑒𝑛 (line 6). If 𝑙𝑒𝑛 + 𝜃 ≥ 𝜏 , 𝒞 must be a
(𝜃, 𝜏)-persistent 𝑘-core by Definition 3 (line 7). Otherwise,
we divide the search space into two disjoint subspaces by
randomly picking a node 𝑢 in 𝒞 (line 10): (1) the subspace
of excluding 𝑢, and (2) the subspace of including 𝑢. Clearly,
any (𝜃, 𝜏)-persistent 𝑘-core must be contained in one of these
two subspaces. We make use of a set 𝒮 to maintain all the
included nodes.
Subspace-I: excluding 𝑢. In this subspace, the resulting (𝜃, 𝜏)-
persistent 𝑘-cores cannot contain 𝑢. Thus, we invoke Algo-
rithm 4 to delete 𝑢 (line 15). Since removing 𝑢 may trigger
the deletions of the other nodes, Algorithm 4 returns all
these deleted nodes ℛ and an indicator variable 𝑓𝑙𝑎𝑔. If
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Algorithm 6 Branch-Bound (𝒞, 𝒮, 𝑘, 𝜏 )
1: if ∣𝒞∣ < 𝑠𝑖𝑧𝑒 then return;
2: 𝒞ℳ ← All-Components (𝒞); {// compute the connected components}
3: for all 𝒞 ∈ 𝒞ℳ do
4: if 𝒮 ⊆ 𝒞 then
5: if ∣𝒞∣ < 𝑠𝑖𝑧𝑒 then return;
6: {ℳℐ𝒞, 𝑙𝑐} ← Meta-Interval-Intersection(𝒞, 𝑘);
7: if 𝑙𝑐 ≥ 𝜏 then ℛ∗ ← 𝒞; 𝑠𝑖𝑧𝑒← ∣𝒞∣; return;
8: {ℳℐ𝒮, 𝑙𝑠} ← Meta-Interval-Intersection(𝒮, 𝑘);
9: if 𝑙𝑠 ≥ 𝜏 and ∣𝒮∣ < ∣𝒞∣ then

10: Randomly pick a node 𝑢 ∈ 𝒞∖𝒮;
11: 𝑓𝑢 ← 𝑑𝑢; 𝑑𝑢 ← 0; {// 𝑓𝑢 records the degree persistence}
12: 𝒬 ← ∅; 𝒬.𝑝𝑢𝑠ℎ(𝑢); 𝒜 ← ∅;
13: while 𝒬 ∕= ∅ do
14: 𝑢← 𝒬.𝑝𝑜𝑝(); 𝒜 ← 𝒜∪ {𝑢};
15: {ℋ, 𝑓𝑙𝑎𝑔} ← Remove-Node (𝑢, 𝒮, 𝑘, 𝜏 );𝒬 ← 𝒬∪ℋ;
16: if 𝑓𝑙𝑎𝑔 = 0 then break;
17: if 𝑓𝑙𝑎𝑔 = 1 then Branch-Bound (𝒞∖𝒜, 𝑆, 𝑘, 𝜏 );
18: 𝑑𝑢 ← 𝑓𝑢;
19: for all 𝑣 ∈ 𝒜 do
20: Add-Node (𝑣, 𝑘);
21: 𝒮 ← 𝒮 ∪ {𝑢}; {// the case of including 𝑢}
22: {ℳℐ𝒮, 𝑙𝑠} ← Meta-Interval-Intersection(𝒮, 𝑘);
23: if 𝑙𝑠 ≥ 𝜏 then
24: ℬ ← ∅; 𝒬 ← ∅;
25: for all 𝑣 ∈ 𝒞∖𝒮 do
26: {ℳℐ𝒱, 𝑙𝑣} ← Meta-Interval-Intersection(𝒮 ∪ {𝑣}, 𝑘);
27: if 𝑙𝑣 < 𝜏 then
28: 𝑓𝑣 ← 𝑑𝑣 ; 𝑑𝑣 ← 0;
29: ℬ ← ℬ ∪ {𝑣};
30: 𝒬 ← ℬ; 𝒜 ← ∅;
31: while 𝒬 ∕= ∅ do
32: 𝑣 ← 𝒬.𝑝𝑜𝑝(); 𝒜 ← 𝒜∪ {𝑣};
33: {ℋ, 𝑓𝑙𝑎𝑔} ← Remove-Node (𝑢, 𝒮, 𝑘, 𝜏 );𝒬 ← 𝒬∪ℋ;
34: if 𝑓𝑙𝑎𝑔 = 0 then break;
35: if 𝑓𝑙𝑎𝑔 = 1 then Branch-Bound (𝒞∖𝒜, 𝑆, 𝑘, 𝜏 );
36: for all 𝑣 ∈ ℬ do
37: 𝑑𝑣 ← 𝑓𝑣 ;
38: for all 𝑣 ∈ 𝒜 do
39: Add-Node (𝑣, 𝑘);
40: 𝒮 ← 𝒮∖{𝑢};

Algorithm 7 PC (𝒢, 𝜃, 𝑘, 𝜏 )
Input: 𝒢 = (𝒱, ℰ), 𝜃, 𝑘, and 𝜏
Output: The maximum (𝜃, 𝜏)-persistent 𝑘-core
1: ℛ∗ ← ∅; 𝑠𝑖𝑧𝑒← 0; {// global variables}
2: 𝒞 ← TGR (𝒢, 𝜃, 𝑘, 𝜏 );
3: Branch-Bound(𝒞, ∅, 𝑘, 𝜏);
4: return ℛ∗;

𝑓𝑙𝑎𝑔 = 1, we remove all the nodes in ℛ from 𝒞, and then
recursively invoke the branch and bound algorithm in the
reduced subgraph 𝒞∖ℛ (line 17). Otherwise, we can safely
prune this subspace, because we fail to delete 𝑢, implying that
there is no (𝜃, 𝜏)-persistent 𝑘-core in this subspace (line 16).
After this step, we backtrack to the search space before
removing 𝑢. This can be done by invoking Algorithm 5 to
add back the deleted nodes (lines 18-20).
Subspace-II: including 𝑢. In this subspace, we invoke the
branch and bound algorithm subject to the constraint that the
resulting (𝜃, 𝜏)-persistent 𝑘-cores must contain 𝑢. After that,
we backtrack to the search space before including 𝑢, which
can be done by removing 𝑢 from 𝒮 (lines 21-40).

The algorithm uses a variable 𝑠𝑖𝑧𝑒 to record the largest size
of the (𝜃, 𝜏)-persistent 𝑘-cores computed so far. If ∣𝒞∣ < 𝑠𝑖𝑧𝑒,
we can prune this search space, because the (𝜃, 𝜏)-persistent
𝑘-cores contained in this space must be smaller than 𝑠𝑖𝑧𝑒
(line 5). Below, we propose several effective pruning rules
to further reduce the search space.

Upper-bound pruning. Let 𝑙𝑠 be the total length of the
common meta-intervals of the nodes in 𝒮 calculated by
Algorithm 3. Since the resulting (𝜃, 𝜏)-persistent 𝑘-cores must
contain 𝒮, 𝑙𝑠 + 𝜃 is an upper bound of the core persistence
of the (𝜃, 𝜏)-persistent 𝑘-core. For a component 𝒞 and the
included-node set 𝒮, we can first compute 𝑙𝑠 for 𝒮. If 𝑙𝑠 < 𝜏 ,
we can prune the current search space, because the core

persistence of the (𝜃, 𝜏)-persistent 𝑘-cores in this space must
be smaller than 𝜏 (lines 8-9 in Algorithm 6).

Excluding-node pruning. Consider the case of excluding a
node 𝑢. After invoking Algorithm 4, if ℛ ∕= ∅ and 𝑓𝑙𝑎𝑔 = 1,
we may further delete the node whose degree persistence is
smaller than 𝜏 when deletingℛ. This is because the deletion of
nodes in ℛ may trigger the degree persistence of the neighbors
of the nodes inℛ smaller than 𝜏 . As a result, we can iteratively
remove the nodes until all the nodes with degree persistence
no less than 𝜏 (similar to the TGR procedure). To this end,
we create a queue 𝒬 that initially includes all the nodes in
ℛ. Then, we pop a node 𝑣 from 𝒬, and invoke Algorithm 4
to delete 𝑣 and also to update the degree persistence of 𝑣’s
neighbors. Suppose that Algorithm 4 returns ℛ′ and 𝑓𝑙𝑎𝑔′
in an iteration. If 𝑓𝑙𝑎𝑔′ = 0, we are able to prune this
subspace, because we cannot delete 𝑢 in this case (line 16).
Otherwise, we add all nodes in ℛ′ into 𝒬. Then, we iteratively
perform the same procedure until 𝒬 = ∅ (lines 12-16). This
pruning rule can largely reduce the number of nodes of the
input component, thus substantially reduce the search time as
verified in our experiments.

Including-node pruning. Consider the case of including a
node 𝑢. Assume that the current input component is 𝒞 and
the included-node set is 𝒮. We have several pruning tricks in
this case. First, we can apply the upper-bound pruning rule to
prune the unpromising search space. Specifically, we compute
the total length of the common meta-intervals of the nodes in
𝒮 ∪ {𝑢}, and then we make use of the upper-bound pruning
rule to prune the search space (lines 21-23). Second, for each
node 𝑣 ∈ 𝒞, we compute the total length of the common
meta-intervals of the nodes in 𝒮 ∪ {𝑢, 𝑣}, denoted by 𝑙𝑣. If
𝑙𝑣+𝜃 < 𝜏 , we can conclude that 𝑣 cannot be contained in any
(𝜃, 𝜏)-persistent 𝑘-core that already consists of 𝒮∪{𝑢}. We use
a set ℬ to record all those nodes (lines 24-29). Clearly, we can
delete all the nodes in ℬ. Note that the deletion of the nodes
in ℬ may result in the other nodes that must also be removed.
As a consequence, we can use the same method as used in
the excluding-node pruning to prune the unpromising search
spaces (lines 30-35). As demonstrated in the experiments, this
pruning rule can further reduce the search time significantly.

Since Algorithm 6 does not miss any search space, the
results obtained by our algorithm are correct. Below, we
analyze the complexity of our algorithm.

Complexity analysis. Since the problem of finding the largest
(𝜃, 𝜏)-persistent 𝑘-core is NP-hard, the worst-case time com-
plexity of Algorithm 7 is exponential. More specifically, there
are at most 𝑂(2�̃�) subspaces (because the recursion tree of our
algorithm is clearly a binary tree), where �̃� denotes the size
of the largest connected component of the reduced temporal
graph. In each subspace, the algorithm takes at most 𝑂(𝜃𝑚)
time to delete and add nodes, and 𝑂(�̃�𝑁) time to compute
the common meta-intervals, where 𝑁 denotes the maximum
number of active meta-intervals in the reduced temporal graph.
Therefore, the worst-case time complexity of Algorithm 7
is 𝑂(2�̃�(�̃�𝑁 + 𝜃𝑚)𝑛𝑐), where 𝑛𝑐 denotes the number of
connected component of the reduced temporal graph. Since
�̃� is typically not very large and the proposed pruning rules
are very effective, the proposed algorithm is tractable in many
real-world large-scale temporal graphs. In the experiments, we
will show that our algorithm is scalable to handle the temporal
graph with more than 1 million nodes and 10 million edges.

Enumerating all persistent communities. The proposed
branch and bound framework can be easily extended to enu-
merate all (𝜃, 𝜏)-persistent 𝑘-cores. In particular, we remove
the size constraint in Algorithm 6, and add a constraint
of ∣𝒞∣ = ∣𝒮∣ for maximal property testing. Specifically, in
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TABLE I
DATASETS AND PARAMETERS (DEFAULT VALUE AND RANGE)

Datasets 𝑛 𝑚 𝜃 𝑘 𝜏

Chess 7,301 65,053 7, [5, 9] 4, [3, 6] 16, [12, 20]
Linux 63,399 1,028,233 7, [3, 11] 10, [6, 14] 30, [22, 38]
Enron 87,273 1,134,990 6, [4, 8] 4, [3, 7] 22, [18, 26]
DBLP 1,570,522 11,596,310 4, [2, 6] 8, [4, 12] 18, [14, 22]

Algorithm 6, we delete lines 1 and 5. In line 7, we add a
constraint ∣𝒞∣ = ∣𝒮∣. If ∣𝒞∣ = ∣𝒮∣ and 𝑙𝑐 ≥ 𝜏 , we output 𝒞 as
a (𝜃, 𝜏)-persistent 𝑘-core. The reasons are as follows. First, 𝒞
is connected and the core persistence of 𝒞 is no less than 𝜏 .
Second, since ∣𝒞∣ = ∣𝒮∣, there is no candidate node that can
be added into 𝒮 , thus 𝒮 = 𝒞 satisfies the maximal property.
As a result, 𝒞 is a (𝜃, 𝜏)-persistent 𝑘-core.

V. EXPERIMENTS

We conduct comprehensive experiments to evaluate the
efficiency and effectiveness of the proposed algorithms. We
implement the TGR algorithm (Algorithm 2) to prune the tem-
poral graph. For the PC search problem, we implement four
various algorithms: Basic, BB+, BB++, and BB-All. All these
algorithms first invoke TGR to reduce the temporal graph,
and then call Algorithm 6 to find the maximum persistent 𝑘-
core. The differences among these algorithms are the pruning
rules used in Algorithm 6. Specifically, Basic does not use any
pruning rule presented in Section IV-B. We make use of this
algorithm as the baseline for efficiency testings, because no
existing algorithm can be used to find persistent 𝑘-cores. BB+
denotes the Basic algorithm with upper-bound pruning. BB++
is the BB+ algorithm with excluding-node pruning, and BB-
All denotes BB++ with including-node pruning. All algorithms
are implemented in C++. All experiments are conducted on a
computer with two 3.46GHz Xeon CPUs and 64GB memory
running Red Hat Enterprise Linux 6.4.

Datasets. We use four different types of real-world temporal
networks in the experiments. The detailed statistics of our
datasets are summarized in Table I. All the datasets are
downloaded from (http://konect.uni-koblenz.de). Chess is a
temporal network in which a temporal edge (𝑢, 𝑣, 𝑡) represents
a chess game between the players 𝑢 and 𝑣 at time 𝑡. Linux is a
temporal communication network of the Linux kernel mailing
list, where a temporal edge (𝑢, 𝑣, 𝑡) denotes a reply from a
user 𝑢 to 𝑣 at time 𝑡. Enron is a temporal email network
between employees of Enron between 1999 and 2003. DBLP
is a temporal collaboration network of authors.

Parameters. There are three parameters in our community
models which are 𝜃, 𝑘 and 𝜏 . Note that if 𝜃 is too large, the
persistent constraint of our models will be very loose, and
thus the resulting communities are not the qualified persistent
communities. On the other hand, if 𝜃 is too small, there will
be no persistent community. Similarly, if 𝑘 and/or 𝜏 are too
large, there will be no answer, while if 𝑘 and/or 𝜏 are too
small, the obtained communities are not cohesive and are
also not persistent. We will study how these parameters affect
the community size in the following experiments. Table I
shows the ranges and default values of the parameters used
in the experiments. The default values of our parameters are
estimated based on the following method. First, we compute
the average gap between too consecutive temporal edges and
use it as an estimation of 𝜃. Then, we divide the temporal graph
into several 𝜃-length snapshots, and compute the maximum
𝑘-core number (𝑘max) on each snapshot. The parameter 𝑘
is estimated by the average 𝑘max values over all snapshots.
After determining 𝜃 and 𝑘, we invoke the meta-interval
decomposition method to calculate the degree persistence for
each node, and use the average degree persistence as an
estimation of 𝜏 . Note that since the time scales of the datasets
are diverse, the parameter settings are also different for various
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Fig. 6. Efficiency of the TGR algorithm
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datasets. When varying a certain parameter, the values for all
the other parameters are set to their default values.
A. Efficiency testings
Efficiency of the TGR algorithm. In this experiment, we
test the efficiency of the TGR algorithm (Algorithm 2) with
varying 𝜃, 𝑘, and 𝜏 . The results of varying 𝜃 in all the datasets
are shown in Figs. 6(a-d). As can be seen, the running time
of the algorithm increases with increasing 𝜃 in all datasets.
This is because the time complexity of the TGR algorithm
is 𝑂(𝜃𝑚), which is linearly dependent on 𝜃. For the results
of varying 𝑘 and 𝜏 , we only report the results in the DBLP
dataset in Figs. 6(e-f), and similar results can also be observed
in the other datasets. From Fig. 6(e), we can see that the
running time of TGR decreases when 𝑘 increases. This is
because for a large 𝑘, the algorithm can quickly remove a
large number of unpromising nodes, and thus significantly
reduces the running time of the iterative-refinement procedure.
As observed in Fig. 6(f), the efficiency of TGR seems not very
sensitive w.r.t. 𝜏 . In DBLP, the fluctuation of the running
time of our algorithm is around 0.1 seconds. Additionally,
we can see that the TGR algorithm is very efficient in all
testings. For example, in DBLP, TGR takes less than 4 seconds
under the default parameters setting. These results confirm the
complexity analysis shown in Section III-E.

Comparison of different PC search algorithms. In this
experiment, we compare the efficiency of different PC search
algorithms. The results are reported in Fig. 7. For all the
algorithms, the search time is the time spent in the branch
and bound procedure (excluding the time taken by the TGR
procedure), while the total time denotes total running time of
the algorithm. Since some of the PC search algorithms may
not be tractable, we limit the maximal running time by 1000
seconds for all algorithms. As can be seen, both Basic and BB+
are very costly, which are intractable in the Chess, Linux, and
Enron datasets. BB++ is very efficient in the Chess, Linux, and
DBLP datasets. It is at least two orders of magnitude faster
than both Basic and BB+. The best algorithm is the BB-All
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Fig. 8. Efficiency of BB-All with varying parameters
algorithm, which is very efficient in all datasets. Moreover, we
can see that the search time of BB-All is generally one order of
magnitude faster than BB++. For example, in DBLP, BB-All
takes only 6ms, whereas BB++ consumes 76ms. These results
indicate that both the excluding-node pruning and including-
node pruning are very effective to prune the search space.

Efficiency of BB-All with varying parameters. Since BB-
All is significantly more efficient than the other algorithms,
in this experiment we study how the parameters affect the
performance of the BB-All algorithm. Figs. 8(a-d) depict
the results with varying 𝜃 in all the datasets. As shown in
Figs. 8(a-d), both the total time and search time increase
with increasing 𝜃. This is because there could be a large
number of (𝜃, 𝜏)-persistent 𝑘-cores for a large 𝜃, and thus
the search space will significantly increase with increasing 𝜃.
The total time is dominated by the search time in the first
three datasets. However, in DBLP, when 𝜃 is small, the total
time is dominated by the TGR procedure. This is because
when 𝜃 is small, the size of the reduced temporal graph in
DBLP could be very small, and thus the branch and bound
procedure will be much faster. Figs. 8(e-f) report the results
in DBLP when varying 𝑘 and 𝜏 respectively. Similar results
can also be observed in the other datasets. We can observe that
both the total time and search time decrease with increasing
𝑘 or 𝜏 . This is because for a large 𝑘 or 𝜏 , the size of the
reduced temporal graph could be small, and therefore the
branch and bound search algorithm will be very efficient. In
most parameter testings, the running time of BB-All is no large
than 15 minutes. These results indicate that BB-All is indeed
tractable for real-world large temporal graphs.
B. Effectiveness testings

In this experiment, we implement two baselines for com-
parison: KCore and PClique. KCore is an intuitive baseline
which first finds all the persistent edges (with persistence
larger than the threshold 𝜏 ), and then computes the 𝑘-core in
the temporal subgraph induced by all persistent edges. Note
that we can apply the same method as used for computing the
core persistence of a temporal subgraph (see Definition 2) to
calculate the persistence of an edge, because each edge can
be deemed as a 1-core. PClique is a persistent clique model
which slightly improves the state-of-the-art temporal clique
model [7] to fully capture the persistence of a community.
Specifically, PClique makes use of the same method as used
in Eq. (1) to aggregate all persistent intervals of the temporal
cliques [7]. We omit the detailed definition of PClique due to
the space limit.

Case study. Fig. 9 shows the communities obtained by our
model and PClique using parameters 𝜃 = 2 (i.e., 2 years),
𝑘 = 3, and 𝜏 = 17 (i.e., 17 years). Note that under the same
parameter setting, the community obtained by KCore contains
161 authors (not shown2) that come from different research

2We do not visualize this community, as it is too large to show in a figure.
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areas including theoretical computer sciences, bioinformatics,
and so on. In fact, given that 𝜃 = 2 and 𝜏 = 17, the
KCore algorithm can obtain a 2-core including 917 nodes, a
3-core containing 161 nodes, and there does not exist high-
order cores (i.e., 3 is the maximum 𝑘). Clearly, in DBLP,
all the 161 authors found by KCore cannot form a persistent
and compact community, as these authors come from diverse
research areas. This result indicate that KCore is ineffective to
identify persistent communities. Instead, as shown in Fig. 9,
both PClique and our model tend to find persistent and
compact communities. For example, in Figs. 9(b) and (d),
the communities found by both PClique and our model
include several famous researchers in the theoretical computer
science area who persistently coauthor a paper in the past few
decades. Compared to PClique, our model is more effective
to detect persistent communities. For instance, in Figs. 9(a-
b), the results obtained by PClique are redundant, and both
of them can only reveal a partial persistent community of the
result obtained by our model (Fig. 9(d)). In effect, the five
researchers in Fig. 9(d) continuously coauthor papers in the
last few decades, thus they should be included in a persistent
community. Similar results can also be observed in Figs. 9(c)
and (e). In addition, our model can find a large persistent
community in the bioinformatics area that cannot be found
by PClique. The reason could be that the clique constraint in
PClique may be too strong, thus ruling out many interesting
persistent communities.

Quality of different models. Conductance is a well-known
metric to measure the quality of a community [15]. Here
we evaluate the conductance of the community obtained by
our model and PClique. Note that we do not show the
results of KCore, because it is ineffective to identify persistent
communities. Fig. 10 shows the conductance and the size of
the communities obtained by our model and PClique with
varying 𝜏 . Similar results can also be observed using the
other parameters. As can be seen, our model consistently
outperforms PClique based on the conductance metric. Also,
we can see that the community size of our model is no smaller
than that of PClique as desired. These results further confirm
the effectiveness of the proposed model.

VI. RELATED WORK

Temporal graph mining. Our work is related to the problem
of mining temporal graphs, which has attracted much attention
in the database community. For example, Bansal et al. [16]
investigated a problem of finding stable keywords clusters in
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a collection of blog posts for specific temporal intervals. A
cluster in [16] is modeled as a bi-connected component of
the keyword graph, which could be less cohesive for natural
graphs. Wu et al. [17] studied the shortest path problem
in temporal graphs. Yang et al. [18] proposed an algorithm
to detect frequent changing components in temporal graph.
Huang et al. [19] investigated the minimum spanning tree
(MST) problem in temporal graphs. Gurukar et al. [20]
proposed a model called communication motifs to identify the
recurring subgraphs that have similar sequence of information
flow. More recently, Wu et al. [21] proposed an efficient
algorithm to answer the reachability and time-based path
queries in a temporal graph. Yang et al. [22] studied a problem
of finding a set of diversified quasi-cliques from a temporal
graph. Wu et al. [13] proposed a temporal 𝑘-core model
based on the counts of temporal edges. Their temporal 𝑘-core
model does not consider the persistence of the community,
thus it cannot be used for detecting persistent communities
in a temporal graph. Ma et al. [23] investigated a dense
subgraph problem in temporal graphs, in which the temporal
edges are associated positive and negative weights. Again,
the dense subgraph proposed in their work did not consider
the persistence of the community, thus cannot be applied
to our problem. To (partially) capture the persistence, Viard
et al. [7] proposed a temporal clique model as well as an
algorithm using 𝑂(2𝑛𝑛2𝑚3 + 2𝑛𝑛3𝑚2) time and 𝑂(2𝑛𝑛𝑚2)
space to find all the temporal cliques. Himmel et al. [10]
proposed an improved algorithm to enumerate all temporal
cliques. Their algorithm, however, is still costly to handle
large temporal graphs. Unlike the temporal clique model, our
persistent community model is based on the concept of 𝑘-
core, and the proposed algorithms can be scalable to handle
large temporal graphs. In addition, temporal networks were
also studied in the physics community and a comprehensive
survey can be found in [24].

Cohesive subgraph mining. Our work is also related to
cohesive subgraph mining. There are a number of cohesive
subgraph models that have been proposed in the literature.
Notable cohesive subgraph models include maximal clique
[25], 𝑘-core [8], [26], 𝑘-truss [2], [3], maximal 𝑘-edge con-
nected subgraph (M𝑘CS) [27], [28], locally dense subgraph
[4], influential community [12], and so on. To mining the
maximal cliques from a disk-resident graph, Cheng et al. [25]
proposed an I/O-efficient algorithm based on a concept of
𝐻-index graph [29]. The same group also proposed several
I/O-efficient algorithms to compute the 𝑘-core and 𝑘-truss
efficiently [1], [2]. Huang et al. presented a different 𝑘-truss
model called 𝑘-truss community which can be used to find
overlapped communities. To compute the M𝑘CS efficiently,
Chang et al. [28] proposed a linear-time algorithm which
significantly improves an algorithm proposed by Zhou et al.
[27]. More recently, Qin et al. [4] proposed a locally dense
subgraph model as well as an efficient algorithm to identify
all the disjoint dense subgraphs of a graph. Li et al. [12]
introduced an influential community model which can capture
both the influence and cohesiveness of the community. All the
above-mentioned cohesive subgraph models do not consider
the temporal information, thus they cannot be used to model
persistent communities.

VII. CONCLUSION

In this paper, we propose a novel community model called
(𝜃, 𝜏)-persistent 𝑘-core to capture the persistence of a com-
munity in temporal networks. We prove that the problem
of finding the maximum (𝜃, 𝜏)-persistent 𝑘-core is NP-hard.
A novel temporal graph reduction technique and a branch
and bound algorithm are proposed to solve this problem

efficiently. We show that the proposed algorithms can also be
used to enumerate all (𝜃, 𝜏)-persistent 𝑘-cores. Comprehensive
experiments in real-life temporal networks demonstrate the
efficiency and scalability of our algorithms, as well as the
effectiveness of our model.
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